GREEN AND ENVIRONMNETAL AUDIT REPORT 2018-2019

Nalbari College, Nalbari, Assam -781335

Letter No. B/NLB/Gen/Misc/1003

Date. 13/05/2019

Certificate

This is to certify that Nalbari College has undergone a comprehensive green and environmental audit, demonstrating its commitment to environmental sustainability and responsible resource management. The entire practice was carried out by a team of qualified members of the college and under the supervision of the undersigned.

The audit covered various aspects of environmental management, including

- 1. Physical profile and land use pattern of the college campus.
- 2. Assessment of the biodiversity (Both flora and fauna) inside the college campus.
- 3. Assessment of plantation soil, air, drinking water, noise quality in the college campus.
- 4. Estimation of the yearly energy consumption of the college.
- Estimation of waste generated (organic/inorganic/e-waste) in various corners of the college and review of waste disposal system of the college.
- 6. Assessment of best environmental practices.

The college has demonstrated effective environmental management practices, proactive measures to minimize its environmental footprint, and a commitment to continuous improvement.

I offer my best wishes to the college in its pursuit for excellence in higher education and all its future endeavours.

(Mukut Ch. Das AFS,DCF) Divisional Forests Officer Social Forestry Division Divisional Educat Officer Social Forestry Division

Green audit assessment committee Nalbari college, Nalbari, Assam – 781335

Facilitator and chief patron

Dr. Kamal Nayan Patowary, Chairman, Green Audit Committee & Principal, Nalbari College, Nalbari.

Coordinator, Editor, compiler of the Report

Dr. Rupak Kumar Sarma, Assistant Professor, Department of Botany, Nalbari College, Nalbari.

Advisers

Mr. Kumud Ch Rabha, Assistant Professor, Department of Zoology, Nalbari College, Nalbari. Dr. Nabajyoti Deka, Associate Professor, Department of Chemistry, Nalbari College, Nalbari. Mr. Hitesh Thakuria, Assistant Professor, Department of Geography, Nalbari College, Nalbari.

Technical consultants

Dr. Purabi Sarmah, Assistant Professor, Department of Chemistry, Nalbari College, Nalbari.
Dr. Meetali Deori, Assistant Professor, Department of Zoology, Nalbari College, Nalbari.
Dr. Dibashree Tamuli, Assistant Professor, Department of Zoology, Nalbari College, Nalbari.
Dr. Pranita Bora, Assistant Professor, Department of Chemistry, Nalbari College, Nalbari.
Ms. Dhritashri Das, Assistant Professor, Department of Botany, Nalbari College, Nalbari.
Mr. Giren Ch. Deka, Assistant Professor, Department of Geography, Nalbari College, Nalbari.

Field surveyors and assistance providers

Ms. Himashree Sarma, Student, 4th Semester, Botany (Hons) Nalbari College, Nalbari.
Md. Nurul Haque, Student, 4th Semester, Botany (Hons) Nalbari College, Nalbari.
Mr. Madhurjya Talukdar, Student, 6th Semester, Botany (Hons) Nalbari College, Nalbari.
Mr. Arnabjaan Talukdar, Student, 6th Semester, Chemistry (Hons) Nalbari College, Nalbari.
Mr. Bhargab Parashar, Student, 6th Semester, Chemistry (Hons) Nalbari College, Nalbari.
Ms. Urnisha Deka, Student, 6th Semester, Chemistry (Hons) Nalbari College, Nalbari.
Ms. Rimzim Bharadwaj, Student 6th Semester, Zoology (Hons) Nalbari College, Nalbari.
Mr. Bhargab Kamal Baishya, Student, 4th Semester, Zoology (Hons) Nalbari College, Nalbari.
Mr. Kaushik Kumar Deka, Student, 4th Semester, Geography (Hons) Nalbari College, Nalbari.
Mr. Nibir Deka, Student, 4th Semester, Geography (Hons) Nalbari College, Nalbari.
Mr. Sonmani Kalita, Student, 4th Semester, Geography (Hons) Nalbari College, Nalbari.

Acknowledgement

The completion of the green audit report reflects the dedication of the college administration, faculty, non-teaching staff, and students toward fostering an eco-friendly campus environment.

Our sincere thanks go to Dr. Kamal Nayan Patowary, Principal of Nalbari College, and Chairman, of the Green Audit Committee for his constant guidance throughout the practice.

We would like to offer our gratitude to all the faculty members of the Department of Botany, Zoology, Chemistry, and Geography for their overwhelming support during the compilation of the report.

Students are the sole energy of an academic institution. Students from all the departments helped with field surveys and data collection during the process. We are grateful to them.

We sincerely acknowledge Dr. Arup Kumar Misra, Chairman, Pollution Control Board, Guwahati, and his surveying team in assessing the air, and noise quality inside the college campus.

We would like to thank concern officials of the Department of Public Health Engineering, Nalbari for analysing the drinking water quality inside the college premises.

Our sincere thank goes to Krishi Vigyan Kendra, Nalbari and AAU-Horticultural Research Station, Kahikuchi, Guwahati for their support in analyzing the plantation soil quality of the college.

Through the meticulous assessment of environmental practices and the implementation of sustainable initiatives, Nalbari College exemplifies leadership in promoting a greener future. The findings and recommendations outlined in the green audit report serve as valuable insights for further enhancing sustainability efforts within the college community.

Harman

Dr. Rupak Kr. Sarma Co-ordinator Green audit committee Nalbari College, Nalbari

Table of contents

Unit	Topic title	Page No
1.	Introduction	1-3
2.	Land use pattern within the Nalbari college campus	4-6
3.	Biodiversity audit within the Nalbari college campus	7-18
4.	Energy audit	19-28
5.	Soil, water, air, and noise quality in the Nalbari college campus	29-38
6.	Auditing the waste materials and their management	39-41
7.	Best environmental practices	42-43
8.	Overall recommendations	44
9.	Bibliography	45

1. Introduction

1.1 About the College - a bird's eye view

Nalbari college stands as a beacon of academic excellence in Assam, tracing its roots back to the pre-independence era when it was established on July 4th, 1945. Since its inception, the college has played a pivotal role in fostering higher education across the lower Brahmaputra valley, earning recognition as one of the premier institutions in the region. Originally affiliated with Calcutta University, the college transitioned to being under the academic jurisdiction of Gauhati University in 1948, following the establishment of the later. This shift marked a new chapter in its academic journey, aligning it closely with the educational landscape of the lower Brahmaputra valley.

Nalbari college offers a diverse range of educational streams, catering to both male and female students. From Higher Secondary education to the Postgraduate level, the institution provides a comprehensive platform for students to pursue their academic aspirations across various disciplines. With a commitment to academic rigor, innovation, and holistic development, Nalbari college continues to uphold its legacy as a hub of learning and intellectual growth in the region. The college has been at the forefront of innovation in higher education, continually expanding its offerings to meet the evolving needs of students and the job market. Through its proactive approach, the college has initiated several UGC-sponsored jobs-oriented programs, including Travel and Tourism Guidance and Disaster Management. These programs equip students with practical skills and knowledge essential for thriving in these specialized fields. Notably, the introduction of Bachelor of Physical Education (B.P.E) makes Nalbari college a pioneer in offering this course in the entire Assam region, showcasing its dedication to staying ahead in educational trends and demands. In recent years, it has introduced self-financing courses, including Bachelor of Computer Application (BCA) and Post Graduate Diploma in Computer Application (PGDCA), catering to the growing demand for expertise in the field of computer science and technology. Through these stint-demanding initiatives, Nalbari college continues to demonstrate its commitment to academic excellence and preparing students for successful careers in a rapidly changing global landscape.

1.2. Exploring environmental footprints in Nalbari college: The essence of green audit The green audit is a comprehensive assessment of environmental sustainability practices within an organization. Conducting green audits demonstrates a commitment to environmental responsibility. It reflects an organization's dedication to minimizing its ecological footprint and contributing positively to the environment. With this practice organizations can identify opportunities for improving resource efficiency; waste (organic/inorganic) management; landscape utilization, floral-faunal diversity, yearly energy consumption, and ambient soil/air/water/noise quality inside the college campus. The overall practice can lead to cost savings through reduced energy consumption, water usage, and waste disposal, enhancing the organization's overall efficiency and competitiveness.

Nalbari college, with its steadfast commitment to environmental sustainability and responsibility, presents the Green Audit Report for the period 2018-2019. In compliance with the National Assessment and Accreditation Council, New Delhi (NAAC) guidelines advocating for an annual Green Audit in higher educational institutions, Nalbari college embraces its responsibility to uphold environmental sustainability and maintain a green campus. The current report encapsulates the college's proactive efforts towards fostering a greener and more sustainable future. Through systematic identification, quantification, recording, reporting, and analysis of various environmental parameters, Nalbari college aims to assess and enhance its eco-friendly practices. Overall, the green audit serves as a structured mechanism to assess, monitor, and enhance the college's environmental performance,

aligning with NAAC's mandate and reflecting Nalbari college's dedication to fostering a greener and more sustainable environment for current and future generations.

The overall audit practices ensured fostering the knowledge of land use patterns; biodiversity inside the college campus (both floral and faunal); waste management tactics, ideas on annual power consumption, monitoring of ambient air, water, soil, noise quality of the campus; and proper utilization of natural resources. Additionally, the green audit identifies specific measures necessary to sustain our green campus initiative, ensuring the well-being of both our campus community and the surrounding external community. Thus, the broad objectives of the audit report include

- 1. To document the physical profile of the college, including the land use pattern and build up area inside the college campus.
- 2. To estimate the biodiversity inside the college campus.
- 3. To assess the plantation soil, air, drinking water, noise quality in the college campus.
- 4. To calculate the yearly energy consumption of the college.
- 5. To audit waste generation (organic/inorganic/e-waste) in various corners of the college and review the waste disposal system of the college.
- 6. To assess the best environmental practices.
- To promote awareness amongst the students on protection of environment for a sustainable future.

2. Land use pattern within the college campus

2.1 Geographical location

Nalbari college is a multi-streamed coeducational institution located in the Nalbari district of Assam, India. The college extends between 26°26′5″ North to 26°26′10″ North latitude and 91°26′30″ East to 91°26′45″ East longitude. The southern campus of the college lies within Japarkuchi village while the main campus is located at ward no. 06 of Nalbari town. The north and west side of the college is bounded by Bidyapur area and ward no. 07 respectively. The southern and eastern side of the college is bounded by Japarkuchi and Digheli revenue villages of Nalbari district, Assam.

2.2 Physical profile of the college

The college covers a total area of around 14 acres of land. The physical topography of the college is a part of the low lying plain of the mighty river Brahmaputra. The college is located at a height of 42 metre above mean sea level (MSL). The college as a part of the sub-tropical monsoonal climatic zone enjoys hot & wet summer and dry winter with an annual average rainfall around 250 cm & temperature ranges between 10° to 45° C. The soil type of the college campus is alluvial in nature.

2.3 Land use pattern

2.3.1. Methodology adopted for land use mapping

Land use and land cover (LULC) map provides information about the types of land use activities and the physical cover of the land surface within a specific area. It distinguishes between different land use categories such as residential, commercial, industrial, agricultural, and recreational areas as well as natural land cover types like forests, wetlands, water bodies and barren land.

For preparing LULC map of Nalbari college Google Earth Pro is used to acquire highresolution satellite imagery of the region. After obtaining the imagery, it was downloaded into a Geographic Information System (GIS) environment and georeferenced for accurate spatial alignment. Digitization is done for distinguish each of the index of LULC. The study area was classified into four primary categories: built-up areas (encompassing structures like buildings and houses), plantation (encompassing vegetated areas, tree covers and gardens), water bodies (including pond), open spaces (comprising areas devoid of significant human development, such as fields, vacant land, and recreational grounds). Subsequently, the analysis and area calculation for each category was conducted using ArcGIS 10.8 software.

Figure 2.1. Schematic representation of the methodology adopted for land use mapping

2.3.2. Observations: The land use type of the college is classified into built up, open space, plantation and water bodies. The present land use pattern of the college is depicted in the following map:

Figure 2.2. Land use map of the Nalbari, college, Nalbari, Assam (prepared by department of Geography, Nalbari college, Nalbari)

The college has a wide range of open area with area coverage of 39678.3 sq. metres. which occupies around 70.08% of total land area of the college. Its built-up area covers 18.62%

of its total area coverage. The percentage of plantation within the campus occupies 6.21% of the total area whereas water body covers 5.07% of the total area of the college.

Category of Land Use	Area in Square Metre	Area in %
Open Space	39678.3	70.08
Built Up	10543.27	18.62
Plantation	3518.43	6.21
Water Body	2873.05	5.07

Table 2.1. Land Use Pattern of Nalbari college, Nalbari, Assam

2.3.2.1. Category of built-up area verses area occupied: The college covers a total area of around 14 acres of land out of which built up area covers 10543.27 Square metres of area. The built-up area is consisting of administrative building of the college, academic buildings, library, alumni house, indoor stadium, boy's & girl's hostel, healthcare centre, student's union room, gymnasium, security room, college canteen, day care centre, waste disposal site, cycle stand, bike stand, car parking etc.

3. Biodiversity audit within the campus of Nalbari college

The estimation of biodiversity within the Nalbari college campus offers a fascinating glimpse into the rich tapestry of life thriving in our midst. Through meticulous surveying and documentation, we endeavour to explore and understand the diverse array of plant and animal species that call our campus home. Our biodiversity estimation efforts encompass a variety of methodologies, including field surveys, specimen collection, and data analysis. We systematically catalogue the flora and fauna found within different habitats, ranging from wooded areas and green spaces to water bodies and urban landscapes. Each species identified is documented with details on its taxonomy. We involved our degree students of department of Botany and Zoology of during the bio-diversity survey inside the college campus. This hands-on learning experiences will foster a deeper knowledge for students in understanding the natural world.

The Botanical Garden of Nalbari college encompasses 36 different types of plant genera having wide degrees of economic and medicinal importance. Approximately 6.21% of the college campus is covered with green topography comprising of different plants types including trees, shrubs, and herbs. The floral diversity is encompassed with timber yielding plants, fruiting plants, medicinal plants, and ethno-botanically important plant groups.

3.1. Check list of floral diversity of Nalbari college campus

Sl. No.	Vernacular name	English name	Scientific name	Family	Number of plants
1.	Arjun	Arjun tree	<i>Terminalia arjuna</i> (Roxb.) Wight & Arn.	Combretaceae	02
2.	Debadaru	Buddha tree or False Ashok	<i>Monoon longifolium</i> Sonn. B.Xue & R.M.K.Saunders	Annonaceae	04
3.	Kala Jamu	Java plum	<i>Syzygium cumini</i> (L.) Skeels	Myrtaceae	04
4.	Nahar	Iron Wood Tree	Mesua ferrea L.	Calophyllaceae	02
5.	Xilikha	Haritaki	Terminalia chebula Retz.	Combretaceae	01
6.	Bokul	Asian bullet wood	Mimusops elengi L.	Sapotaceae	03

Table 3.1.1. List of floral diversity in the Botanical garden

Sl. No.	Vernacular name	English name	Scientific name	Family	Number of plants
7.	Robor-goch	Rubber	Hevea brasiliensis (Willd. ex A.Juss.) Müll.Arg.	Euphorbiaceae	02
8.	Mou-dimoru	Cluster fig	Ficus racemosa L.	Moraceae	01
9.	Tokou	Doub palm	Borassus flabellifer	Arecaceae	02
10.	Momai Tamul	Areca palm	Chrysalidocarpus lutescens H.Wendl.	Arecaceae	05
11.	Ashok-goch	Ashok tree	Saraca indica L.	Fabaceae	02
12.	Ximalu	Cotton tree	Bombax ceiba L.	Malvaceae	02
13.	Harisankar	Chinese Colli	Cordyline fruticosa (L.) A.Chev.	Asperagaceae	10
14.	Tejpat	Indian bay leaf	Cinnamomum tamala (BuchHam.) T.Nees & C.H.Eberm.	Lauraceae	01
15.	Mati Kothal	Pineapple	Ananas comosus L.	Bromeliaceae	02
16.	Joba Phul	China rose	Hibiscus rosa-sinensis	Malvaceae	05
17.	Karabi Phul	Yellow Oleander/ Nerium	Cascabela thevetia (L.) Lippold	Apocynaceae	02
18.	Kopah-goch	Arabian Cotton	Gossypium herbaceum L.	Malvaceae	02
19.	Bor-thekera	Mangosteen	<i>Garcinia pedunculata</i> Roxb. ex BuchHam.	Clusiaceae	01
20.	Khejur	Pygmy date palm	Phoenix roebelenii O'Brien	Arecaceae	01
21.	Madhuri Aam	Guava	Psidium guajava L.	Myrtaceae	01
22.	Kathanda Phul	Pinwheel flower	Tabernaemontana divaricata R.Br. ex Roem. & Schult.	Apocynaceae	02
23.	Jalphai	Indian olive	Elaeocarpus serratus L.	Elaeocarpaceae	01
			8		

Sl. No.	Vernacular name	English name	Scientific name	Family	Number of plants
24.	Aamlokhi	Indian gooseberry	Emblica officinalis Gaertn.	Phyllanthaceae	01
25.	Rangan	Jungle geranium	Ixora coccinea L.	Rubiaceae	01
26.	Keteki	Pygmy screwpine	Pandanus pygmaeus Thouars	Pandanaceae	02
27.		Dwarf century plant	Agave desmettiana Variegata	Asparagaceae	01
28.	Bhedai lata	Skunkvine	Paederia foetida L	Rubiaceae	01
29.	Podum phul	American lotus	<i>Nelumbo lutea</i> (Willd.) Pers	Nelumbonaceae	01
30.	Bhet , kumud	White waterlily	Nymphaea alba L.	Nymphaeaceae	01
31.	Kopou Phul	Foxtail orchid	Rhynchostylis retusa (L.) Blume	Orchidaceae	01
32.	Dendrobium	Dendrobium	Dendrobium	Orchidaceae	01
33.	Vanda	Cylindrical vanda	Papilionanthe teres L.	Orchidaceae	01
34.	Assomiya angur	China root	Smilax china L.	Smilacaceae	01
35.	Bottle Brush	Bottle Brush	Callistemon speciosus L.	Myrtaceae	04
36.	Golap	Rose	Rosa cinnamomea L	Rosaceae	03

Sl. No.	Vernacular name	English name	Scientific name	Family	Number of plants
1.	Azar	Giant Crape- myrtle	Lagerstroemia speciosa (L.) Pers.	Lythraceae	20
2.	Kala Jamu	Java plum	Syzygium cumini (L.) Skeels	Myrtaceae	06
3.	Xilikha	Haritaki	Terminalia chebula Retz.	Combretaceae	03
4.	Som plant	Som plant	Persea bombycina	Lauraceae	02
5.	Ximalu	Cotton tree	Bombax ceiba L.	Malvaceae	03
6.	Momai Tamul	Areca palm	Chrysalidocarpus lutescens H.Wendl.	Arecaceae	03
7.	Nuni	Noni	Morinda citrifolia L.	Rubiaceae	01
8.	Rudraksha	Rudraksha	Elaeocarpus angustifolius Blume	Elaeocarpaceae	02
9.	Bandor loti	Pink Shower Tree	Cassia javanica L.	Fabaceae	10
10.	Krishnasura	Gulmohar	Delonix regia L	Fabaceae	05
11.	Bokul	Asian bullet wood	Mimusops elengi L.	Sapotaceae	08
12.	Madhuriaam	Guava	Psidium guajava	Myrtaceae	03
13.	Thuja	Thuja	L. Thuja occidentalis L.	Cupressaceae	04
14.	Xewali	Night- blooming jasmine	Nyctanthes arbor tristis L.	Oleaceae	01
15.	Kanchan	white orchid- tree	Bauhinia acuminata L.	Fabaceae	01
16.	Bottle Brush	Bottle Brush	Callistemon speciosus L.	Myrtaceae	05
17.	Bougainvillea	Bougainvillea	Bougainvillea glabra L.	Nyctaginaceae	03

Table 3.1.2. Floral diversity inside the college campus (other than the Botanical Garden)

Sl. No.	Vernacular name	English name	Scientific name	Family	Number of plants
18.	Xirikh plant	Rain tree	Samanea saman (Jacq.) Merr	Fabaceae	08
19.	Nahar	Iron Wood Tree	Mesua ferrea L.	Calophyllaceae	04
20.	Karabi Phul	Yellow Oleander/ Nerium	Cascabela thevetia (L.) Lippold	Apocynaceae	04
21.	Zamia	cardboard palm	Zamia furfuraceae Lf.	Zamiaceae	01
22.	Cycas	Sago palm	Cycas revoluta Thunb		
23.	Kathanda Phul	Pinwheel flower	Tabernaemontana divaricata R.Br. ex Roem. & Schult.	Apocynaceae	01
24.	Golap	Rose	Rosa cinnamomea L	Rosaceae	05
25.	Debadaru	Buddha tree or	Monoon longifolium Sonn. B.Xue &	Annonaceae	04
26.	Snake plant	False Ashok Snake plant	R.M.K.Saunders Dracaena trifasciata (Prain) Mabb	Asparagaceae	01
27.	Kala Jamu	Java plum	Syzygium cumini (L.) Skeels	Myrtaceae	02
28.	Bot Goch	Banayan tree	Ficus benghalensis L.	Moraceae	01
29.	Bor-naheri- bor	Weeping Fig	Ficus benjamina L.	Moraceae	04
30.	Narikol	Coconut	Cocos nucifera L.	Arecaceae	03
31.	Ashok-goch	Ashok tree	Saraca indica L.	Fabaceae	01
32.	Xonaru	Golden shower tree	Cassia fistula L.	Fabaceae	02
33.	Christmas Tree	Christmas Tree	Araucaria columnaris J.R.Forst. Hook.	Araucariaceae	01
34.	Christmas Tree	Christmas Tree	Araucaria heterophylla (Salisb.) Franco	Araucariaceae	01

Sl.	Vernacular	English	Scientific name	Family	Number
No.	name	name			of plants
35.	Maha-neem	Neem tree	Azadirachta indica A.Juss.	Meliaceae	03
36.	Chegun	Teak	Tectona grandis L.f.	Lamiaceae	02
37.	Saranga Pushpo	Mexican lilac	Gliricidia sepium (Jacq.) Steud	Fabaceae	02
38.	Acacia	Australian acacia	Acacia moniliformis	Caesalpiniaceae	02
39.	Aam	Mango	Mangifera indica Linn.	Anacardiaceae	04
40.	Kothal	Jack fruit	Artocarpus heterophyllus Linn.	Moraceae	02
41.	Gakhirati ban	Euphorbia	Euphorbia hirta Linn	Euphorbiaceae	Numerous
42.	Palash	Flame of the forest	Butea monosperma (Lam.) Taub.	Fabaceae	05
43.	Meteka	Water hyacinth	Eichhornia crassipes (Mart.) Solms	Pontederiaceae	Numerous

Hevea brasiliensis (Willd. ex A.Juss.) Müll.Arg.

Chrysalidocarpus lutescens H.Wendl

Lagerstroemia speciosa (L.) Pers.

3.2. Check list of faunal diversity of Nalbari college campus

3.2.1. Mammal diversity:

Sl.	Vernacular	English Name	Scientific name	Family
No.	name			
1	Shiyal	Asiatic Jackal	Canis aureus	Canidae
2	Neul	The Indian grey mongoose	Urva edwardsii	Herpestidae
3	Kerketuwa	Pallas's squirrel	Callosciurus erythraeus	Sciuridae
4	Nigani	Mouse	Mus musculus	Muridae
5	Dalsaliya	The black-footed tree- rat	Mesembriomys gouldii	Muridae

3.2.2. Aves

Sl. No.	Vernacular name	English Name	Scientific name	Family Name
1	Phehu	Black Drongo	Dicrurus macrocercus	Dicruridae
2	Go Bagali	Cattle Egret	Bubulcus ibis	Ardeidae
3	Machroka	Common Kingfisher	Alcedo atthis	Alcedinidae
4	Konamuchuri	Indian Pond Heron	Ardeola grayii	Ardeidae
5	Kauri	House Crow	Corvus splendens	Corvidae
6	Shamuk khola	Asian Open bill Stork	Anastomus oscitans	Ciconiidae
7	Dhadang	Lesser Adjutant Stork	Leptotilos javanicus	Ciconiidae
8	Kuli	Asian koel	Eudynamys scolopaceus	Cuculidae
9	Phutuki kopou	spotted dove	Spilopelia chinensis	Columbidae
10		<i>Eurasian collared dove,</i> collared dove or Turkish dove	Streptopelia decaocto	Columbidae
11	Moupiya	The purple sunbird	Cinnyris asiaticus	Nectariniidae
12	Kathkhola	pileated woodpecker	Dryocopus pileatus	Picidae

Sl. No.	Vernacular name	English Name	Scientific name	Family Name
13	Ghanchirika	house <i>sparrow</i>	Passer domesticus	Passeridae
14	Dauk	The white- breasted <i>waterhen</i>	Amaurornis phoenicurus	Rallidae
15	Shalika	The common myna	Acridotheres tristis	Sturnidae
16	Sharali hah	Lesser whistling duck	Dendrocygna javanica	Anatidae
17	Chute shalika	The jungle myna	Acridotheres fuscus	Sturnidae
18	Phutuki phecha	The spotted owl	Strix occidentalis	Strigidae
19	Bulbuli	The red-vented bulbul	Pycnonotus cafer	Pycnonotidae
20	Pat shiya	The common tailorbird	Orthotomus sutorius	Cisticolidae
21	Sakhiyati	The black-hooded oriole	Oriolus xanthornus	Oriolidae
22	Hutuktukra	The blue-throated barbet	Psilopogon asiaticus	Megalaimidae
23	Haitha	The yellow-footed green pigeon	Treron phoenicopterus	Columbidae

3.2.3. Lizards:

Sl. No.	Vernacular name	English Name	Scientific name	Family Name
1	Тејріуа	Oriental garden lizard	Calotes versicolor	Agamidae
2	Jethi	Common house gecko	Hemidactylus frenatus	Gekkonidae
3	Chakari pheti	Indian cobra	Naja naja	Elapidae
4	Chakari pheti	Monocled cobra	Naja kaouthia	Elapidae
5	Monikara	Garden skink	Lampropholis delicata	Scincidae
6	Bairokh	western rat snake, black rat snake	Pantherophis obsoletus	Colubridae

Sl. No.	Vernacular name	English Name	Scientific name	Family Name
7	Dhunduli pheti	<i>copperhead rat snake,</i> or copper-headed trinket snake	Coelognathus radiata	Colubridae
8	Dhora	Checkered keelback, also known commonly as Asiatic keelback	Fowlea piscator	Colubridae
9	Bamuni	Buff striped keelback	Amphiesma stolatum	Colubridae
10	Gowala	The banded krait	Bungarus fasciatus	Elapidae

3.2.4. Amphibian:

Sl. No.	Vernacular name	English Name	Scientific name	Family Name
1	Chuk Bhekuli	Asian common toad	Duttaphrynus melanostictus	Bufonidae
2	Bhamon Bhekuli	Indian bullfrog	Hoplobatrachus tigerinus	Dicroglossidae
3	Pat beng	West China tree toad	Hyla annectans	Hylidae

3.2.5. Fishes:

Sl. No.	Vernacular name	English Name	Scientific name	Family Name	
1	Goroi	spotted snakehead	Channa punctata,	Channidae	
2	Shingi	Asian stinging catfish or fossil cat	Heteropneustes fossilis	Heteropneustida e	
3	Magur	Philippine catfish	Clarias batrachus,	Clariidae	
4	Botia	Botia	Botia dario	Botiidae	
5	Puthi	Pool barb, spotfin swamp barb, or stigma barb	Puntius sophore	Cyprinidae	
6	Puthi	Systomus	Systomus sarana(p.sarana)	Cyprinidae	
7	Puthi	The ticto barb, also known as the twospot barb	Puntius ticto	Cyprinidae	

SL No.	No. Vernacular English Nam		Scientific name	Family Name
	name			Tunniy Munic
8	Shingora	Tengara catfish, Gangetic Mystus, or Tengra fish	Mystus tengara	Bagridae
9	Cheng		Channa gachua	Channidae
10	Chenar	Bulls eye snakehead,	Channa marulius,	Channidae
11	Kholihona	banded gourami/ striped gourami, or Kholshe	Colisa fasciata,	Osphronemidae
12	Darikona	Indian flying barb	Esomus danricus	Cyprinidae
13	Chanda	longate glassy perchlet	Chanda nama	Ambassidae

3.2.6. Butterflies:

Serial	English name Scientific name		Family name
no			
1	Common Mormon	Papilio polytes	Papilionidae
2	Lime Butterfly	Papilio demoleus	Papilionidae
3	Tailed Jay	Graphium Agamemnon	Papilionidae
4	Psyche	Leptosia nina	Pieridae
5	Indian Cabbage White	Pieris canidia indica	Pieridae
6	Common Gull	Cepora nerissa Phryne	Pieridae
7	Common Jezebel	Delias eucharis	Pieridae
8	Common Emigrant	Catopsilia pomona	Pieridae
9	Small Grass Yellow	Eurema brigitta	Pieridae
10	Common Grass Yellow	Eurema hecabe	Pieridae
11	Three-Spot Grass Yellow	Eurema blanda	Pieridae
12	Common Gem	Poritia hewitsoni	Lycaenidae

Serial	English name	Scientific name	Family name
no			
13	Common Pierrot	Castalius rosimon	Lycaenidae
14	Pale Grass Blue	Pseudozizeeria maha	Lycaenidae
15	Common Hedge Blue	Actolepis puspa	Lycaenidae
16	Plain Tiger	Danaus chrysippus	Nymphalidae
17	Striped Tiger	Danaus genutia	Nymphalidae
18	Common Evening Brown	Melanitis leda	Nymphalidae
19	Grey Pansy	Junonia atlites	Nymphalidae
20	Rice Swift	Borbo cinnara	Hesperiidae

Asian Open bill Stork

The white-breasted waterhen

Spotted dove

House Sparrow

Cattle egret

Common myna

Through the College Lens: Capturing the Essence of Faunal Biodiversity

4. Energy audit

Nalbari college, situated in the vibrant academic landscape of Assam, India, stands committed to this global initiative. In alignment with its mission to foster a culture of sustainability and responsible stewardship, the college has undertaken a comprehensive energy audit spanning the period from 2018-2019. This audit seeks to evaluate and analyse the college's energy consumption patterns, identify areas of inefficiency, and propose actionable strategies to optimize energy usage. By scrutinizing the campus's energy infrastructure, operational practices, and behavioural dynamics, this audit endeavours to cultivate a culture of energy consciousness and propel the institution towards a greener and more sustainable future. In the following sections, we will delve into the methodology, findings, and recommendations derived from the energy audit of Nalbari college, offering insights into the institution's journey towards a more energy-efficient and environmentally conscious future.

4.1 Methodology: The entire energy audit practice based on the development of questionaries and field survey and data collection, followed by analysis of the collected data set.

4.1.1. Questionaries

- What are the sources of energy in the college campus (Electricity, Petrol, Diesel, Solar energy, and others)?
- What is the typical daily energy consumption in different campus buildings (e.g., classrooms, laboratories)?
- How many electrical equipment installed in the departments, classroom, and administrative block?
- What is the electricity bill in the last years?
- What is the amount spent for the purchasing of diesel for generator set for last years?
- Are there any energy-efficient practices currently in place within the college facilities (e.g., use of LED lighting, motion sensors, energy-efficient appliances)?
- Are there any renewable energy sources utilized on campus (e.g., solar panels, wind turbines)?
- How often are maintenance checks performed on energy-consuming equipment to ensure optimal efficiency?

- Are there any energy-saving policies or initiatives in place within the college (e.g., energy conservation campaigns, incentives for energy-efficient behaviours)?
- How does the college track and monitor its energy consumption and efficiency over time?
- Are there any potential areas for improvement identified by students, faculty, or staff regarding energy usage within the college?

4.1.2. Data collection

The committee members of the energy audit with the help of administrative office staff and students collected the data sets like energy sources, energy equipment installed in the department and classrooms, energy consumption pattern, electricity bill, fuel consumption, year wise expense etc. in different sites of the college. The data recorded were further substantiated through survey and discussions.

4.2. Observation

i. Energy sources and consumption areas in Nalbari college

- The main energy source in Nalbari college is the electricity source supplied through ٠ overhead line from state electricity department (APDCL). The transformer installed in the college campus have the capacity of 100 kVA. Power is distributed to different units of the college from this transformer.
- In case of load shedding, the power demand is fulfilled through diesel fuel-based generator system. capacity of the generator: 20 kVA
 - Power efficiency: ~80%
- Inverter based power backup system in selected departments and units.
- The highest amount of energy consumption was noted in the hostel, followed by library, science block, canteen, digital classroom, and administrative block.

ii. Energy consumption:

The electrical energy consumption pattern per year from 2018-2019 was determined from the electricity bill paid. Similarly, the diesel consumption was calculated from the purchasing voucher. The cost incurred during the installation/repairing of the solar panel is also included here. The detailed is documented in tabular form as under -

Table 4.1. Details of energy consumption during 2018-2019							
Sl Year Electricity bill Diesel charges							
No.		(INR)	(INR)				
01	2018-19	5,96,104/-	53,710/-				

iii. Comparison between maximum electricity demand (KVa) and contract electricity demand (KVa) in a year

Maximum electricity demand is the highest level of electrical power consumption during a specific period. Likewise, the contract demand is the amount of electric power that a customer demands from utility in a specified interval. We have examined the electricity bill during 2018-2019 and tabulated the maximum electricity demand and contract electricity demand as under -

Table 4.2. Month-wise compar	ison between maximur	n electricity o	demand (KVa)	and Contract
electricity demand (KVa) during	; 2018-2019			

Sl	Month	Maximum	Average	Contract
NO.		demand (KVa)	electricity demand (KVa	demand (KVa)
01	April, 2018	32.36		67
02	May, 2018	32		67
03	June, 2018	32.36		67
04	July, 2018	18.25		67
05	August, 2018	35.46		67
06	September, 2018	34.65	24.92	67
07	October, 2018	38.08		67
08	November, 2018	20.18		67
09	December, 2018	15.68		67
10	January, 2019	12.26		67
11	February, 2019	11.36		67
12	March, 2019	16.48		67

iii. Key findings and observations of energy usages in the last five years (2018-2019)

a)	Total electricity charges	:5,96,104
b)	Total cost incurred in diesel as generator fuel	:53,710/-
c)	Total cost of energy {electricity(a) + Diesel(b)}	:6,49,814/-
d)	Average cost of energy per month	:54,151/-
e)	Average cost of energy during the year	:6,49,814/-
f)	Average in maximum electricity demand (KVa)	:24.92

** The contract electricity demand could be reduced as the average of the maximum electricity demand is 24.92 during the financial year 2018-2019. This will save additional budget incurred as electricity charges yearly.

iv. Energy-saving policies or initiatives in place within the college

• New construction projects give more priority on the energy-efficient design principles.

- Older buildings are under the process of retrofitting to improve insulation, upgrade windows, and implement other energy-saving measures.
- College is deploying smart meters and building automation systems to monitor and optimize energy usage in real-time, identifying areas for improvement and adjusting energy settings accordingly.
- Turn OFF electrical equipment's when not in use
- CFLs and other lights are being replaced by more efficient LED phase wise.
- Use of computer and electronic equipment's in power saving mode.

v. Recommendations for better energy efficiency

Improving energy efficiency within colleges requires a multifaceted approach that encompasses both technical solutions and behavioural changes. Here are some recommendations for enhancing energy efficiency:

a) No investment/low-cost measures:

- i. Rooms need to be well ventilated for maximized sunlight.
- ii. The ceiling fans need to be cleaned for better motor efficiency of the fan.
- iii. Use minimum amount of light and fan inside the classrooms. Switch off the fan and light if not required.
- iv. Try to avoid air-conditioners. Maximize the use of low energy consuming electrical fans.
- v. The switches of the ceiling fan and light inside the classroom should be arranged in such a way that we can minimize their unnecessary use.
- vi. The college authority and teaching staff need to aware the students about the future benefits of energy conservation.

b) Long term planning/high investment

- i. Implement campus-wide policies and guidelines to promote energy conservation, such as setting thermostat limits, implementing power management settings on computers, and encouraging the use of energy-efficient appliances and equipment.
- ii. Replace the overhead power supply line with underground system. Frequent storm and heavy rain are common in Assam during the monsoon season. Sometimes, it causes heavy destruction in the overhead electricity supply system. Extra cost incurred in this period as college need to purchase additional diesel to run the generator. Similarly, the repairing of the overhead electrical line is an extra burden on the college fund. The overall recurring

expenditure can be cut down with the installation of the underground electrical supply system.

c) During the survey, the audit team found the high contract electricity demand. Additional cost is incurred annually due to the allocation of extra contract electricity demand. The college authority needs to discuss with the competent authority of IRCA, APDCL, Rangia to reduce the amount into an optimum level.

vi. Overall consolidated findings of the energy audit

- i. Assessment and future probable electrical load calculation is adequate.
- ii. The college is paying the monthly electricity bill continuously.
- iii. Monthly electricity consumption is not very high.
- iv. The college is giving much emphasis on reducing the power consumption and replace the non-renewable energy source with renewable energy.
- v. The competent college authority is giving importance on energy conservation awareness among the stakeholders of the college.

vii. Post audit phage

Energy audit is a regular practice. This is required for the proper management of the energy sources. Minimum energy utilization and innovative energy saving ingenuities need to be followed for a sustainable future. college needs to give emphasis on the recommendations of the of the audit team before the next audit.

Installed transformer (100 kVA) inside the college campus

Generator (20kVA) as alternative energy source

viii. Supplementary materials used during energy audit

Sl no	Department/ Room	No of Laptop	No of desktop computer	No. of printer	No. of projector	No. of refrigerator	No. of fan	No. of light	Other electronic devices
1	Principals' Office & Administrative Block	01	12	06		01	14	25	Air conditionei 02
2	Assamese	NIL	01	01	01	NIL	05	05	Pure drop water filter 01
3	Economics	NIL	02	01	01	NIL	07	06	NIL
4	Education	NIL	01	NIL	NIL	NIL	04	03	NIL
5	English	NIL	03	01	01	NIL	02	03	Pure drop water filter 01
6	Geography	02	10	01	01	NIL	10	15	Pure drop water filter 01
7	History	NIL	01	01	01	NIL	12	09	NIL
8	Philosophy	NIL	01	NIL	NIL	NIL	02	01	NIL
9	Political Science	NIL	01	01	01	NIL	04	05	NIL
10	Sanskrit	NIL	01	01	01	NIL	05	03	NIL
11	Botany	NIL	05	01	01	01	11	07	Pure drop water filter 01
12	Chemistry	01	02	01	01	01	15	25	Pure drop water filter 01
13	Mathematics	01	01	01	01	NIL	05	07	NIL
14	Physics	01	03	01	01	NIL	07	06	Pure drop water filter 01

Table 4.3. Account of electrical stuffs in the departments/classrooms of Nalbari college

Sl no	Department/ Room	No of Laptop	No of desktop computer	No. of printer	No. of projector	No. of refrigerator	No. of fan	No. of light	Other electronic devices
15	Statistics	01	20	01	01	NIL	04	02	Pure drop water filter
16	Zoology	NIL	01	01	02	01	27	18	Pure drop water filter 01
17	Geology	NIL	01	NIL	NIL	NIL	01	02	NIL
18	Computer Application	NIL	02	01	01	NIL	08	04	NIL
19	Computer Application lab	NIL	30	04	01	NIL	10	10	NIL
20	Central computer laboratory	NIL	30	04	01	NIL	80	06	NIL
21	Library	NIL	18	03	NIL	NIL	41	60	Pure drop water filter 01
22	IQAC	01	02	02	01	NIL	02	08	Air conditionei 01
23	NRC	NIL	04	01	NIL	NIL	03	02	NIL
24	PGA	NIL	NIL	NIL	NIL	NIL	12	08	NIL
25	R-09	NIL	NIL	NIL	NIL	NIL	05	04	NIL
26	R-10	NIL	NIL	NIL	NIL	NIL	05	05	NIL
27	BOT-01	NIL	NIL	NIL	01	NIL	04	02	Air conditionei
28	BOT-02	NIL	NIL	NIL	NIL	NIL	04	06	NIL
29	R-07	NIL	NIL	NIL	NIL	NIL	06	05	NIL
30	R-08	NIL	NIL	NIL	NIL	NIL	04	03	NIL
31	Z00-01	NIL	NIL	NIL	NIL	NIL	04	02	NIL

Sl	Department/	No of	No of	No. of	No. of	No. of	No.	No.	Other
no	Room	Laptop	desktop computer	printer	projector	refrigerator	of fan	of light	electronic devices
32	Z00-02	NIL	NIL	NIL	NIL	NIL	04	02	NIL
33	Z00-03	NIL	NIL	NIL	NIL	NIL	04	02	NIL
34	Z00-04	NIL	NIL	NIL	NIL	NIL	04	03	NIL
35	ZOO-05	NIL	NIL	NIL	NIL	NIL	04	03	NIL
36	CHEM-01	NIL	NIL	NIL	NIL	NIL	02	02	NIL
37	CR	NIL	NIL	NIL	NIL	NIL	11	08	NIL
38	NB-02	NIL	NIL	NIL	NIL	NIL	05	04	NIL
39	BB-01	NIL	NIL	NIL	NIL	NIL	04	02	NIL
40	BB-02	NIL	NIL	NIL	NIL	NIL	03	06	NIL
41	BB-11	NIL	NIL	NIL	NIL	NIL	03	04	NIL
42	AB-11	NIL	NIL	NIL	NIL	NIL	05	04	NIL
43	AB-12	NIL	NIL	NIL	NIL	NIL	04	04	NIL
44	Examination Room	NIL	NIL	NIL	NIL	NIL	02	06	NIL
45	Teachers' Common Room	NIL	02	NIL	NIL	01	04	06	NIL
46	AB12	NIL	NIL	NIL	NIL	NIL	02	02	NIL
47	AB13	NIL	NIL	NIL	NIL	NIL	05	02	NIL
48	AB14	NIL	NIL	NIL	NIL	NIL	04	02	NIL
49	AB21	NIL	NIL	NIL	NIL	NIL	03	02	NIL
50	AB22	NIL	NIL	NIL	NIL	NIL	03	03	NIL
51	Digital Class room	NIL	NIL	NIL	NIL	NIL	01	24	Air conditionei 03
52	KMBH1	NIL	NIL	NIL	NIL	NIL	02	02	NIL

Sl	Department/	No of	No of	No. of	No. of	No. of	No.	No.	Other
no	Room	Laptop	desktop computer	printer	projector	refrigerator	of fan	of light	electronic devices
53	KMBH2	NIL	NIL	NIL	NIL	NIL	02	02	NIL
54	КМВНЗ	NIL	NIL	NIL	NIL	NIL	02	02	NIL
55	KMBH4	NIL	NIL	NIL	NIL	NIL	02	02	NIL
56	KMBH21	NIL	NIL	NIL	NIL	NIL	06	02	NIL
57	SB01	NIL	NIL	NIL	NIL	NIL	06	05	NIL
58	SB02	NIL	NIL	NIL	NIL	NIL	06	04	NIL
59	SB03	NIL	NIL	NIL	NIL	NIL	04	02	NIL
60	SB04	NIL	NIL	NIL	NIL	NIL	03	02	NIL
61	SB05	NIL	NIL	NIL	NIL	NIL	02	02	NIL

Inverter with battery as a source of energy storage

Solar street light inside the college

Energy audit certificate

This is to certify that the 'energy audit' for Nalbari College, P.O.: Nalbari, Nalbari - 781335, (Assam) has been conducted for the period 2018-2019, evaluate its energy consumption patterns, identify areas of inefficiency, and recommend measures for improvement. This audit typically outlines the findings of the energy audit, including energy-saving opportunities, potential cost savings, and suggested actions to enhance energy efficiency and reduce energy consumption.

Dr. Kamal Nayan Patolyan Asam Principal & Chairman, Green Audit Committee Nalbari College, Nalbari

Dr. Rupak Kr. Sarma Assistant Professor, Department of Botany & Co-ordinator, Green audit committee Nalbari College, Nalbari

Ananta Rajbongshi ¹¹ Associate Professor & Head, Department of Physics & Internal auditor, Energy audit committee Nalbari College, Nalbari

Area RCA

Jayanta Bhatta MEC. Mangalua Area Manager, IRCA, Mangaldoi Electrical Circle, APDCL, LAR & External Energy auditor

Place: Nalbari

Date: 11/05/2024

5. Assessment of the plantation soil, water, air, and noise quality in the college campus.

5.1. Plantation soil quality inside the college campus: Testing of plantation soil inside the college campus is one of the prime requirements of green audit. The scientific analysis of soil samples from different corners of the college campus will provide an in-depth idea about the fertility and future probable application of the college and resource for sustainable and smart agriculture.

5.1.1. Methodology: The soil sample was collected from different soil horizon upto 45cm depth from 06 different collection sites covering the whole college campus. At first the surface grass was clearly removed and collected the surface soil, followed by the collection of soil sample of 15 cm and 45cm of depth. All the three soil sets were mixed, air dried, removed the plant parts, sieved properly and analysed the soil pH, organic carbon, available nitrogen, P₂O₅, and K₂O. The analysis was carried out at Department of Botany, Nalbari college, Nalbari in collaboration with AAU-Horticultural Research Station, Kahikuchi, Guwahati.

Sl	Parameters			Collect	ion sites		
No.							
		G1	<i>S1</i>	<i>S2</i>	<i>S3</i>	<i>S4</i>	<i>S5</i>
1.	рН (1:2)	7.5	7.5	7.4	7.6	8.0	8.1
2.	Water holding capacity (%)	44.1	41.2	46.4	42.0	44.0	45.1
3.	Organic carbon (%)	1.88	1.58	1.74	1.64	0.84	0.82
4.	Available N (Kg/ha)	445.2	211.0	530.2	441.2	310.1	202.3
5.	Available Phosphorus (Kg/ha)	47.2	12.6	73.3	62.3	13.02	12.05
6.	Available Potassium (Kg/ha)	73.5	63.43	80.01	60.10	12.13	21.12

5.1.2. Findings: The findings are mentioned in tabular form below –

 Table 5.1.1. Study of soil quality in the college campus

5.1.3. Inference: Overall observations denote the good plantation soil quality inside the college campus. The soil is found to be neutral to slightly alkaline in site G1, S1, S2, and S3. This suggests good pH conditions for soil microbial activity. However, slightly high pH was noticed in the study sites S4 and S5. Accordingly, the two sites can be opted for the plantation of the alkaline soil-loving plants. The soil samples of all the collection sites have good water holding capacity, depicting the clayey soil nature, beneficial for the proper growth and development of plants. Similarly, the soil organic carbon content higher than 1.5% in the surface soil is considered adequate for soil plant nutrition. Besides the two collection sites (S4 and S5), soil of all the other collection sites is nourished with a good amount of organic carbon, a good sign for plantation soil. Accordingly, the available N, P,

and K in the soil samples were monitored and found in better condition. The quantity of N, P, and K in the collection sites S4 and S5 can be accelerated with biological methods in near future.

5.2. Management of water resource

5.2.1. Drinking water quality: Assessing the drinking water quality of a college campus is essential to ensure the health and safety of students, faculty, and staff. Ground water sampling and testing for various parameters like pH, turbidity, alkalinity, total hardness, Ca hardness, TDS; and contaminants like bacteria (such as *E. coli*), heavy metals (e.g. Iron, fluoride, arsenic), and chlorine should be a regular practice for any educational institutions.

5.2.1.1. Methodology: Drinking water samples from four different boring sites inside the college campus were collected in clear plastic bottles and sent for analysis to District Level Laboratory (DLL), Public Health Engineering (PHE) Office, Nalbari, Assam.

5.2.1.2. Result and inference:

The competent authority of DLL, PHE, Nalbari have analysed the water sample and provided the results as stated below

Sl No.	Pin point location	ЬН	Turbidity (NTU)	lron (mg/l)	Alkalinity (mg/l)	Chlorine (mg/l)	Total Hardness (mg/l)	Ca Hardness (mg/l)	TDS (mg/l)	Fluoride (mg/l)	Arsenic (mg/l)	Bacteria (MPN)
Pern	nissible limit					0			0			. 1
		6.5-8.5	1-5	0.3-1.0	200-600	250-100	300-600	75-200	500-100	1.0-1.5	0.01	0/100m]
1.	College canteen	7.06	0	0.089	110.0	11.26	73.0	30.0	130.0	0.000	0.005	Nil
2.	Administrative office	6.78	0	0.388	79.8	15.77	62.60	42.0	218.0	0.221	0.006	Nil
3.	Sanskrit Dept.	7.12	0	0.640	54.65	11.45	116.0	17.0	160.0	0.346	0.007	Nil
4.	College Library	6.62	0	0.341	100.5	9.76	97.60	41.0	218.0	0.248	0.006	Nil

Table 5.2.1.1. Drinking water of	quality inside the	college campus
----------------------------------	--------------------	----------------

*Based on the above result, it is concluded that the water samples are POTABLE as per BIS: 10500.

REPORT NO. - PHEE/NAL/DLL/WQR/2024-25/ 1005

Dated- 12/09/2018

Dat	e of Sample Collection:	02/05/2018	3								Date	of Test	ting Con	pleted	: 03/09/	2018
									TEST	RESUL	T (TREA	TED W	ATER thr	ough IR	P)	
SI No.	Pin Point Location	Block	GP	Village	Type of Source	Æ	Turbidity	Iron	Alkalinity	Chloride	Total Hardness	Ca Hardness	TDS	Fluoride	Arsenic	Bacteria (by vial)
-	91019 C	(Desirable	Limit	Permissible Lin	nit)>	(6.5	(1-5)	(0.3	(200 600)	(250	(300	(75	(500	(1.0-	(0.01	NI
iin.		1	1		UNIT>		NTU	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	-
1	Nalbari College Canteen	Pub Nalbari	4 No. Khata	Japarkuchi	Bore Well	7.06	0	0.089	110.0	11.26	73.0	30	130.0	0.000	0.005	Nil
2	Nalbari College Office	Pub Nalbari	4 No. Khata	Japarkuchi	Bore Well	6.78	0	0.388	79.8	15.77	62.60	42.0	218.0	0.211	0.006	Nil
3	Sanskrit Deptt., Nalbari College	Pub Nalbari	4 No. Khata	Japarkuchi	Bore Well	7.12	0	0.640	54.65	11.45	116.0	17.0	160.0	0.346	0.007	Nil
4	Library, Nalbari College	Pub Nalbari	4 No. Khata	Japarkuchi	Bore Well	6.62	0	0.341	100.5	9.76	97.60	41	218.0	0.248	0.006	Nil

N.B.:- The water of the samples are POTABLE as per BIS: 10500. Result correspondence as per sample received.

Microbiologist, DLL (PHE)

Nalbari Division, Nalbari

Chemist Asst, Crewind UPE (PHE) Asst, Crewind UPE (PHE) Walling Divisionis Waltari

Lab Kenthal, (Pifef Win Assistant Execution Engineer (Pife), Subari Sub (Pirision, Nalbari

5.2.2. Water use and conservation

Water use and conservation within a college campus is an important aspect of sustainability and responsible resource management. The Nalbari college is highly dependent on ground water for daily activities of almost the average of 2000 people. The college has 05 numbers of boring wells and sub permissible pumps. Subsequently, the college has installed a good number of cemented and polymer (PVC) water tank across the campus (Table 5.2.2.1). Although the ground water level in the district is not under threatened state, continuous deep boring exercise may lead to geogenic contamination of the water with arsenic, fluoride, or any other heavy metal. Recently, the arsenic and fluoride contamination in the ground water of Nalbari district has been reported (Central Ground water Report 2018). Such type of contamination may lead to the serious health issues to the consumers like kidney damage, liver failure, gastric issues, mental retardation, bone and teeth decomposition etc. Thus, we need to minimize the extraction of ground water in day-to-day activities, other than the drinking water. Taking this point in mind, the college has installed two rain harvesting units with 1000Ltr and 500Ltr capacity. One such facility is installed in the department of Chemistry of the college. The department store the rain water adequately for future use in rinsing the laboratory glass wares. The collected rain water in the other harvesting tank is used in the watering of the college gardens. Moreover, this facility is need to be arranged in each building to reduce the use of ground water.

Table 5.	.z.z.i. storage capac	cities of water tanks inside the c	conege campus
Sl No.	Number of Tank	Cemented/polymer (PVC)	Total Capacity
		water tank	(Ltr)
1	01	Cemented	12000
2	01	Cemented	6000
3	07	Polymer (PVC) water tank	1000
4	06	Polymer (PVC) water tank	500

5.2.3. Weather and air quality in the college campus (2018-2019)

Good weather and air quality is significantly important in any educational institution. Failing to provide good air quality can lead to an increase in long-term and short-term health problems for students and staff as well. Accordingly, air quality inside the Nalbari college campus is monitored by Assam Pollution Control Board, Guwahati. However, some of the data of air quality and weather condition was retrieved from the official website of Central Pollution Control Board (Govt. of India) and other authenticate sources.

5.2.3.1. Observations

5.2.3.1.1. Weather: Yearly average of Temperature, Rainfall and Humidity in the college during 2018-2019 was collected from the online sources https://weatherandclimate.com, and https://www.accuweather.com.

<u>Year 2018</u>

Sl No	Year	Month	Average tem	perature (°C)	Average	Average
			Maximum	Minimum	Humidity (%)	rainfall (inch)
1	2018	January	23.20	11.22	60.43	0.18
2		February	26.34	14.62	57.67	0.22
3		March	31.14	17.38	45.35	0.23
4		April	33.16	21.18	54.43	1.19
5		May	33.63	22.35	66.15	4.75
6		June	34.34	24.26	75.27	5.77
7		July	31.40	25.88	87.17	8.50
8		August	34.53	27.54	81.11	5.74
9		September	30.76	23.70	79.80	4.37
10		October	29.56	20.43	77.14	2.12
11		November	25.52	18.34	76.33	0.29
12		December	21.76	13.45	65.24	0.29

<u>Year 2019</u>

Sl No	Year	Month	Average tem	perature (°C)	Average	Average
			Maximum	Minimum	Humidity (%)	rainfall (inch)
1	2019	January	24.49	13.84	62.66	0.17
2		February	27.64	15.92	55.67	0.24
3		March	32.34	19.38	44.48	0.23
4		April	34.66	22.48	52.44	1.18
5		Мау	33.63	23.85	69.14	4.35
6		June	33.54	25.86	78.37	5.71
7		July	31.35	25.72	87.17	8.68
8		August	33.62	26	81.31	5.46
9		September	31.56	24.6	83.78	4.59
10		October	30.41	21.29	81.14	2.14
11		November	27.92	17.71	76.42	0.31
12		December	24.69	14.35	71.74	0.31

Comment: The overall data set depicts the normal weather of the region. However, the temperature is increasing gradually. This is due to the ongoing urbanization and rapid industrialization in the nearby areas. The region experienced warmest month in August 2018. Similarly, the coldest month was January 2018.

5.2.3.1.2. Air quality:

The average data on air quality during 2018-2019 was collected from the air quality collection data centre installed inside the college campus by Assam pollution control board. However, some of the data were collected from the official website of central pollution control board (Govt. India).

<u>Year 2018</u>

Sl	Parameters	Average	Unit	AQI
No		data		
01	PM_{10}	72		
02	MP _{2.5}	39		
03	SO ₂	2.5	$\mu g/m^3$	32
04	NO ₂	3.8		
05	Ozone (O_3)	72		
06	Carbon monoxide (CO)	0.25		

<u>Year 2019</u>

Sl	Parameters	Average	Unit	AQI
No		data		
01	PM ₁₀	75		
02	PM _{2.5}	42		
03	SO ₂	3	μg/m ³	35
04	NO ₂	4		
05	Ozone (O_3)	45		
06	Carbon monoxide (CO)	0.11		

Abbreviations: PM_{10} - particulate matter 10 micrometres or less in diameter; $MP_{2.5}$ - particulate matter 10 micrometres or less in diameter; NO_2 - Nitrogen Dioxide; CO - *Carbon Monoxide*; SO₂ - Sulphur Dioxide; $\mu g/m^3$ - Micrograms per Cubic Meter of Air; AQI – Air Quality Index

Comment: From the above tabulated data, the average air quality index (AQI) for the period 2018-2019 was calculated as 33.5. This satisfies the satisfactory air quality index inside the college campus. However, the AQI is on the almost borderline between good and moderate air quality (according to the air quality index scale of the Central Pollution Control Board), which needs the utmost attention. The ongoing construction activities and industrialization in the nearby areas have gradually increased the contents of air pollutants which need proper regulation.

Pollution Control Board, Assam

Central Laboratory, Bamunimaidam, Guwahati অসম প্রদূষণ নিয়ন্ত্রণ পৰিষদ কেন্দ্রীয় পৰীক্ষাগাৰ, বামুনীমৈদাম, গুৱাহাটী

	Test I	Report		
REPORT NO.	AA- 06/18	-		
SERVICE REQUEST NO.	18/2018	SERVICE	REQUEST DATE	05.04.2018
DATE OF ISSUE	30.04.2018	SAMPLE	RECEIVED DATE	20.04.2018
NAME & ADDRESS	Nalbari College, Nalba	ri, Assam, P	IN-781335	
Location Description			GPS Co-Ordinates	
Within the college premis	es of Nalbari College, Nalbari		Latitude: 26.436231	°; Longitude: 91.441706°

AMBIENT AIR QUALITY ANALYSIS

Sampling Details:	
Date and Time of Start of Sampling	18-04-2018; 12.00 Hrs
Date and Time of Completion of Sampling	19-04-2018; 12.30Hrs
Sampling done by	Sri R. Haque (AES); Sri M.K.Dutta (SA); Sri H.B. Deka(SA)
Sampling duration	24 hrs
Date of analysis	30-04-2018
Sampling equipment used	RDS:PCBA/Air/PM10/01& FPS: PCBA/Air/PM2.5/15
Ambient Temperature (⁰ C)	Max: 32 ⁰ C Min: 23 ⁰ C
Weather condition	Clear sky
Sampler location w.r.t. height from GL	Approx10 meters

Test Result:

					End o	of Report
4	Oxides of Nitrogen as NO ₂	IS:5182(Part6) (Re-affirmed 2022)	IS:5182(Part6) (Re-affirmed 2022)	µg/m³	3.8	80 μg/m ³ (24 hours average)
3	Sulphur Dioxide as SO ₂	IS:5182(Part2)-2001 (Re-affirmed 2017)	IS:5182(Part2)- 2001(Re-affirmed 2017)	µg/m³	2.5	80 μg/m³ (24 hours average)
2	PM2.5 or Fine Particulate matter of size ≤ 2.5micron	IS:5182 (Part 24)2019	IS:5182 (Part 24) 2019	µg/m³	39	60 μg/m³ (24 hours average)
1	PM 10 or Particulate Matter of size \leq 10micron	IS:5182 (Part 23)- 2006 (Re-affirmed 2017)	IS:5182 (Part 23)-2006 (Re-affirmed 2017)	µg/m³	72	100 μg/m ³ (24 hours average)
SI. No	Parameters	Test Method	Sampling Method	Unit	Result	National Ambient Air Quality Standards, 2009 as per CPCB

Note: The results related to the parameter tested only.

Checked By

(Bring (G.K.Misra) Addl. Chief Env. Scientist

Reviewed & Authorized by

autic M (Monoj Saikia) Chief Env. Scientist

Pollution Control Board, Assam

Central Laboratory, Bamunimaidam, Guwahati অসম প্রদূষণ নিয়ন্ত্রণ পৰিষদ

কেন্দ্রীয় পৰীক্ষাগাৰ, বামুনীমৈদাম, গুৱাহাটী

Test Report

REPORT NO.	AA- 06/18			
SERVICE REQUEST NO.	18/2018	SERVICE	REQUEST DATE	05.04.2018
DATE OF ISSUE	30.04.2018	SAMPLE	RECEIVED DATE	20.04.2018
NAME & ADDRESS	Nalbari College, Nalk	pari, Assam, F	PIN-781335	
Location Description			GPS Co-Ordinates	
Within the college premises of Nalbari College, Nalbari.			Latitude: 26.436231	°; Longitude: 91.441706°

AMBIENT AIR QUALITY ANALYSIS

Sampling Details:	
Date and Time of Start of Sampling	26-04-2018; 12.00 Hrs
Sampling done by	Sri R. Haque (AES); Sri M.K.Dutta (SA); Sri H.B. Deka(SA)
Sampling duration	8 hrs
Date of analysis	30-04-2018
Sampling equipment used	HORIBA APMA-370 & HORIBA APOA-370
Ambient Temperature (°C)	Max: 33 ^o C
Ambient remperature (C)	Min: 23 ^o C
Weather condition	Clear sky
Sampler location w.r.t. height from GL	Approx10 meters

Test Result:

SI.No	Parameters	ers Test Method		Result	National Ambient Air Quality Standards, 2009 as per CPCB
1	Ozone (O ₃)	UV Photometric Method	µg/m³	72	100 μg/m³ (8 hours average)
2	Carbon Monoxide (CO)	Non-Dispersive Infrared Method	mg/m ³	0.25	2 mg/m ³ (8 hours average)

Note:

1. The results given above are related to the tested sample, for various parameters as analyzed.

Checked By

(Am) (G.K.Misra) Addl. Chief Env. Scientist

Reviewed & Authorized by

[ashih (Monoj Saikia) Chief Env. Scientist

Page 1 of 1

5.4. Ambient noise quality inside the college campus: Assessing noise quality inside a college campus is essential for maintaining an environment conducive to learning, research, and general well-being. The sampling and analysis of noise quality was performed in different sampling locations inside the college campus by the experts from Assam Pollution Control Board. The result is tabulated as under –

Sl No.	Source/L	ocation	Noise		Noise (Ambient Standards) in dB(A)			
			level	in	During day	During day time (in		t time (in
			dB(A)		between 06 AM & 10		between 10 PM & 06	
					PM)	AM)	
01	Near colle	ege main	58.3		Industrial	75	Industrial	70
	gate (wit	thin the			zone		zone	
	college ca	impus)						
02	Near	Botany	45.5		Commercial	65	Commercial	55
	Departme	ent			zone		zone	
03	Near	Zoology	55.5					
	Departme	ent						
04	Near two-	-wheeler	60.5		Silence zone	50	Silence zone	40
	parking a	rea						

Table 5.4.1. Noise quality inside the college campus

5.4.1. Comment: The assessment provides a comprehensive overview of the noise quality on campus and help to formulate practical solutions to mitigate identified issues in concerned locations. The practical solutions will enhance the academic and living environment for students and staff. Moreover, the above data establishes that the Nalbari college Camus is free from ambient noise as the sound decibels in all the testing sites is less than the threshold limit.

The flowers that bloom tomorrow are the seeds you planted today

Pollution Control Board, Assam

Central Laboratory, Bamunimaidam, Guwahati অসম প্রদূষণ নিয়ন্ত্রণ পৰিষদ কেন্দ্রীয় পৰীক্ষাগাৰ, বামুনীমৈদাম, গুৱাহাটী

	Test	Report	
REPORT NO.	AN- 05/18		
SERVICE REQUEST NO.	15/18	SERVICE REQUEST DATE	05.04.2018
DATE OF ISSUE	30.04.2018	SAMPLE RECEIVED DATE	
Location Details: Nalbari Co	llege, Nalbari, Assar	n.	
GPS Co-Ordinates: Latitude:2	26.436231°; Longitude	e:91.441706°	

Sampling Details:

Date of sampling	26-04-2018
Sampling done by	Sri R. Haque (AES); Sri M.K.Dutta (SA); Sri H.B. Deka(SA)
Date of analysis	29-04-2024
Sampling equipment used	PCBA/Air/SLM/01& PCBA/Air/SLM/02
Ambient Temperature (°C)	Max: 34 ⁰ C
Ambient remperature (C)	Min: 21 °C
Weather condition	Clear sky

Test Result:

	Noise Level		Noise (Ambient Standards) in dB (A) in Leq				
Source/Location	in dB(A) in Leq	Remarks	During day time (in between 6.00 AM & 10PM)		During night time (in between 10.00 PM & 6.00 AM)		
Near main gate, within the college campus, Nalbari College, Nalbari.	58.3				Industrial		
Near Botany Deptt.,within the college campus, Nalbari College, Nalbari.	45.5	All activities are running at	Zone	75	Zone	70	
Near Zoology Deptt.,within the college campus, Nalbari College, Nalbari.	55.5	the time of monitoring	Commercial Zone	65	Commercial Zone	55	
Near two wheeler parkingArea, within the college campus, Nalbari College, Nalbari.	60.5		Silence Zone	50	Silence Zone	40	

*All data are collected during day time.

Note: The results related to the parameter tested only.

Checked By

(Sim) (G.K.Misra)

Addl. Chief Env. Scientist

End of Report

Reviewed & Authorized by

laver (MonojSaikia) Chief Env. Scientist

6. Generation of waste materials and their management

6.1. Auditing for waste management of college campus

Nowadays rapid urbanization, deforestation, massive population growth, etc. are the root causes of producing negative impacts on the environment leading to global warming, climate change, etc. To tackle the adverse impact of climate, change every individual has to reduce their carbon footprints at the individual level. So, higher educational institutions are expected to play a leading role in mitigating the issues responsible for environmental pollution by taking appropriate measures.

A scientific waste management protocol and efficient disposal mechanism are key for maintaining a healthy and livable environment on the college campus and the greater locality in general. The college has more than 4000 stakeholders, including students, teaching staff, non-teaching staff, and part-time workforce which produce a sizeable amount of waste material. Waste composition includes: Biodegradable- Organic waste, Paper Waste; Non-biodegradable- Plastic waste, Glassware waste, metal waste, electronic waste (E-waste); and liquid waste (Both biodegradable and non-bio-degradable).

In the science laboratories (Chemistry, Botany, and Zoology), a variety of solid and liquid wastes are generated during various experimental procedures. Proper management of both solid and liquid waste is crucial to minimize environmental impact and ensure laboratory safety. This can be done by segregating wastes according to their properties and by disposing them in place by using appropriate containers for storage. Appropriate practice of waste disposal would allow us to handle these waste materials safely and responsibly.

A good number of wastes are generated from the science laboratories of the Nalbari college. Here is a brief account of such generated wastes

- A. Solid waste:
- 1. **Residues from reactions**: During certain experiments like salt analysis, qualitative analysis of organic samples etc. because of chemical reactions, they produce solid by-products or residues that need to be disposed of properly.
- 2. **Expired or unusable chemicals**: Chemicals that have passed their expiration date or are no longer needed for laboratory practice become solid waste if they cannot be reused or recycled.
- 3. **Organic waste**: Some extents of organic wastes are generated in the Botany and Zoology Department of Nalbari college due to the day's practical activities. The principal organic waste materials are -

a. Plant Material: Leaves, stems, flowers, roots, and soil.

- b. Unused Samples: Unused or decayed plant and animal specimens.
- c. Laboratory Waste: Plant and animal tissues from experiments, culture media.

d. Herbarium Waste: Trimmings and discarded plant parts.

e. Animal Waste: Remains of small animals (e.g., invertebrates), feathers, fur.

f. Microbial Waste: Cultures and media used for studying microorganisms.

- 4. **Broken glassware**: Glassware like beakers, flasks, and test tubes may break during experiments, generating solid waste.
- 5. **Spatulas, stirrers, and other tools:** Tools used in experiments may become contaminated or damaged and need to be disposed off properly. Other things like used filter papers, blotting papers, chromatographic papers, gloves and any other benchtop items also become solid wastes.

B. Liquid waste:

- **1. Solvent waste:** Used solvents, such as acetone, ethanol, or chloroform etc. become liquid waste after being used for cleaning or extraction processes.
- **2. Unused chemicals:** Chemicals that are left over after experiments and cannot be reused often become liquid waste.
- **3.** Washings and rinsed solutions: Liquid residues from washing glassware or equipment, which may contain traces of chemicals, become liquid waste.
- **4. Decanted solutions:** Solutions that have been separated by decanting may contain impurities and become liquid waste.
- **5. Neutralization solutions:** Some experiments require neutralization of acidic or basic solutions, which can produce liquid waste.
- **C. Electronic waste (e-waste):** Some amount of e-waste like; batteries, circuit boards, wires, capacitors, resistors, and other components from experimental set-up are generated in the laboratory of Department of Physics, Nalbari college. Similarly, the example of other types of e-wastes generated in the entire college are damaged computer components (monitors, CPU, UPS, printers), used printer cartridge, LED bulbs, charging and network cables, Wi-Fi devices, sound systems, display units, Biometric Machine, scientific instruments, and so on.

We have audited the overall waste generated in the college campus during the period 2018-2019. The major sources of wastes generated in the college campus, their types and approximate quantity are enlisted in tabular form below:

S.	Source	Type of waste generated	Quantity of waste
No.			generated/ day in the
			college
1	Administrative office	Paper, plastic file, plastic bottles,	Approximately 60 kg
		pens, metal clips, pins, rubber band,	including 30 kg (approx) of
		Desktop computer UPS, old printer	organic waste.
		cartridges etc.	
2	Laboratories	Paper, filter paper, plastic wares,	
		broken glass wares, Chemicals and	
		solvents, microbiological growth	
		media	
3	Classrooms	Paper, plastic taps, Chalk pencil, pens,	
		cardboard	
4	Library	Paper, pen, plastics	
5	Computer Sc Dept	Paper, metal clips, pins, old printer	
		cartridges, old CDs, monitors, chips,	
		non-working UPS, and other e-	
		wastes.	
6	College canteen	Disposable plates, cups, paper boxes,	
		plastic wrappers, aluminium foil,	
		vegetable peels, rotten vegetables,	
		leftover food, plastic bottles	
7	Hostel	vegetable peels, rotten vegetables,	
		leftover food,	
8	Staff-rooms	Paper, plastic wrappers, plastic	
		bottles, pens, leftover food	
9	Toilets	Paper, plastic, sanitary napkins	
9	College ground	Grass cuttings, dry leaves	

Table 6.1 Waste generated inside the college campus

- 6.1.1. **Management of waste**: To foster green and clean environment within the campus proper management of waste is very much essential. The management practices of the different types of waste generated are mentioned as below
 - a. The cemented waste bins are constructed in the college premises for proper segregation/disposal of the waste materials (organic, inorganic, and plastic wastes). The responsible college staff separates the wastes first after collection and segregated into the proper waste bins.
 - b. The laboratory wastes are disposed of in separate waste bins to segregate them at the site itself. Depending upon the nature of wastes generated in the laboratory, we used to keep the storage containers with proper labelling. For solid wastes, we have two separate bins. One for broken glassware and second one for other solid wastes. For liquid wastes, we segregate them in two separate bins in terms of their aqueous and nonaqueous nature.
 - c. For proper disposal of the waste materials (organic/inorganic/e waste), the college signed an MoU with an NGO called NESAHR (North Eastern Society for Advancement of Human Resource) authorized by municipal board, Nalbari. This NGO is committed to provide a green and ecofriendly environment by maintaining a proper waste disposal mechanism. The competent authority of the NGO collects the wastes separately in weekly basis and disposed, recycle the same in scientific way.

Cemented waste bin for the segregation of organic, inorganic and plastic waste.

7. Best environmental practices

7.1 Setting up of vermicomposting unit: Vermicomposting is one the best practices, the college exercised from a long time. The plant leaf litters and other organic wastes generated from the college canteen and hostel are used in the vermicomposting unit. Similarly, the rice straw left in the mushroom cultivation unit are used as the food material for the earthworm. The generated vermicompost are used in the college gardens form proper growth and development of the ornamental plants. The vermi-washes are used as organic insecticides in the gardens.

7.2 Wetland conservation and nesting tree initiative for water hens at Nalbari college: Nalbari College is taking initiatives for the protection of water hen population inside the college campus by conserving the wetlands and planting its nestling trees. The initiative is aiming to conserve the population of the bird due to its rapid decreasing in population. Establishing a conservation site for wetlands and water hens (also known as moorhens or waterfowl) at Nalbari college can significantly enhance biodiversity, provide educational opportunities, and promote environmental sustainability.

7.3. Installation of honey bee rearing unit: Installation of honey bee rearing units in small scale inside the Botanical Garden, and other college gardens can be mentioned as one of the best practices inside the college premises. Installing a honey bee rearing unit at Nalbari College can offer numerous educational, environmental, and economic benefits. It promotes biodiversity, provides a hands-on learning experience for students, and supports the local ecosystem through pollination.

8. Overall recommendations

- **8.1.** Reduce campus energy consumption by 20% within the next five years.
- **8.2.** The use of renewable energy resources needs to increase strategically.
- **8.3.** Increase green space on campus by 15% over the next decade through strategic landscaping and conservation efforts.
- **8.4.** There need to be a specific policy for managing the E waste.
- **8.5.** Organize regular sustainability workshops and events to raise awareness among staff, students, and the community.

Bibliography

- 1. http://naac.gov.in/index.php/en/menu/archive/19-quick-links/213-advisory-on-iso-9001-green-certificates-audits.
- 2. https://nalbari.assam.gov.in
- 3. https://desktop.arcgis.com/en/arcmap/latest/get-started/installation-guide/installing-on-your-computer.htm.
- 4. https://www.cgwb.gov.in/old_website/AnnualReports/ANNUAL%20REPORT%20CGW B%202018-19_final.pdfhttps://weatherandclimate.com
- 5. https://www.accuweather.com