Vision of the Institute

course file

- To provide outstanding education and training to our learners to achieve their goals.
- > To reach out to the unreached.
- > To forge institutional, departmental and individual linkage with society.
- To turn the college into a nodal facilitating centre for inclusive and sustainable development of the region.

Mission of the Institute

- To impart quality education to the learners.
- To create better academic environment in order to produce competent and industrious human resource.
- To provide student- centered academic and personal enrichment opportunities to enhance lifelong learning.
- To make education more relevant in the global perspective.
- To expand and accommodate with the changing traits of higher education.

Programme Outcomes

Programme Name: Bachelor in Science

- Scientific temper will be developed in Students.
- Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science stream.
- Students will become employable; they will be eligible for career opportunities in Industry, or will be able to opt for entrepreneurship.
- Students will possess basic subject knowledge required for higher studies, professional and applied courses like Management Studies, IT etc.
- Students will be aware of and able to develop solution oriented approach towards various Social and Environmental issues.

Department of Mathematics Nalbari College, Nalbari

Programme Specific Outcome (B. Sc Mathematics Honours and Generic/Regular)

The Completion of the B. Sc Mathematics Program shall enable a student to:

- 1. Communicate Mathematics effectively by oral, written, computational and graphic means.
- 2. Create Mathematical ideas from basic axioms.
- 3. Gauge the hypothesis, theories, techniques and proofs provisionally.
- Utilize Mathematics to solve theoretical and applied problems by critical understanding, analysis and synthesis.
- Identify applications of Mathematics in other disciplines and in the real world, leading to enhancement of career prospects in a plethora of fields.
- 6. Appreciate the requirement of lifelong learning through continued education and research.

COURSE OUTCOMES

1" Semester (Honours Courses)

Paper Name: Calculus (Including Practical)

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
This course will enable the students to:) Learn first and second derivative tests for relative extremum and apply the knowledge in problems in business, economics and life sciences. ii) Sketch curves in a plane using its mathematical properties in different coordinate systems. iii) Compute area of surfaces of revolution and the volume of solids by integrating over cross-sectional areas. v) Understand the calculus of vector functions and its use to develop the basic principles of planetary motion.	Unit 1: Higher order derivatives, Leibnitz's rule and its application. Concavity and inflection points, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L- Hopital's rule, applications in business, economics and life sciences.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Reduction formulae for integration and its derivation. Volumes by slicing, disks and washers' methods, volumes by cylindrical shells,	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution.		
Unit 3: Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions, tangent and normal components of acceleration, modelling ballistics and planetary motion, Kepler's second law.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Algebra

Paper Code: MAT-HC-1026

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Employ De Moivre's theorem in a number of applications to solve numerical problems. ii) Learn about equivalent classes and cardinality of a set.	Unit 1: Polar representation of complex numbers, n th roots of unity, De Moivre's theorem and its applications.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
 iii) Use modular arithmetic and basic properties of congruences. iv) Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix. v) Learn about the solution sets of linear systems using matrix method and Cramer's rule 	Unit 2: Mathematical logic, sets, functions.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Relations, Induction principles, GCD of integers	Interactive lectures, Problem solving sessions, PPT,	Assignments, Quizzes, Class tests
	Unit 4: Linear equations, solution sets of linear system, matrix and it's applications.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

2nd Semester (Honours Courses)

Paper Name: Real analysis

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
Course Outcome This course will enable the students to: () Understand many properties of the real line R, including completeness and Archimedean properties. (i) Learn to define sequences in terms of functions from N to a subset of R. (ii) Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior, and the limit of a bounded sequence.	Unit 1: Algebraic and order properties of R, absolute value and real line, bounded sets, supremum and infimum, completeness property of R, the Archimedean property, the density theorem, intervals, nested interval theorem.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Real sequences and its convergence, limit and its theorems, Cauchy sequences, Cauchy's convergence criterion.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Infinite series and its convergence, Cauchy criterion, Tests for convergence.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Differential Equations (Including Practical)

Paper Code: MAT-HC-2026

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Learn basics of differential equations and mathematical modeling. ii) Formulate differential equations for various mathematical models. iii) Solve first order non-linear differential equations and linear differential equations of higher order usingvarious techniques. iv) Apply these techniques to solve and analyze various mathematical models.	Unit 1: Basics of Mathematical Model, solution of 1 st order differential equations, various types of 1 st order differential equations and finding its solutions.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Introduction and analysis of different mathematical models using differential equations.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Solutions of 2 nd order differential equations, Wronskian, linear homogeneous and non homogeneous equations of higher order with constant coefficients.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

3rd Semester (Honours)

Paper Name: Theory of Real functions

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Have a rigorous understanding of the concept of limit of a function. ii) Learn about continuity and uniform continuity of functions defined on intervals. iii) Understand geometrical properties	related various theorems and definitions.	Interactive lectures, Problem solving sessions, PPT,	Assignments, Quizzes, Class test

of continuous functions on closed and bounded intervals. iv) Learn extensively about the concept of differentiability using limits, leading to a better understanding for applications.	Unit 2: Continuous functions and related theorems, uniform continuity.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit3: Differentiability of a function and related theorems, Taylor's theorem and applications to inequalities, Taylor's series expansion.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Group Theory-1

Paper Code: MAT-HC-3026

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutationgroups, etc.	Unit 1: Definition and examples of group, subgroups, cyclic groups.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
 ii) Link the fundamental concepts of groups and symmetrical figures. iii) Analyze the subgroups of cyclic groups and classify subgroups of cyclic groups. iv) Explain the significance of the notion of cosets, normal subgroups 	Unit 2: Permutations, Lagrange's theorem, normal subgroups and factor groups.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
and factor groups. v) Learn about Lagrange's theorem and Fermat's Little theorem. vi) Know about group homomorphisms and group isomorphisms.	Unit 3: Group homomorphism and related theorems.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Analytical Geometry

	Course Outcome	Unit no. and Name	Teaching	Assessment Method
h			Methodology	1 10 10 10 10 10 10 10 10 10 10 10 10 10

This course will enable the students to: i) Learn conic sections and transform co-ordinate systems ii) Learn polar equation of a conic, tangent, normal and properties iii) Have a rigorous understanding of the concept of three dimensional coordinates system.	Unit 1: Transformation of co- ordinates, pair of straight lines, different types of conics with general form.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Plane, sphere, cone, cylinder, central conicoid, ellipsoid, hyperboloid of one and two sheets, diametral planes, tangent lines, director sphere, polar plane, section with a given center.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

4th Semester (Honours)

Paper Name: Multivariate Calculus

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Learn the conceptual variations when advancing in calculus from one variable to multivariable discussion. ii) Understand the maximization and minimization of multivariable functions subject to the given constraints iii) Learn about inter-relationship amongst the line integral, double and triple integral formulations. iv) Familiarize with Green's, Stokes' and Gauss divergence theorems.	Unit 1: Functions of several variables, limit, continuity, partial derivatives, chain rule, level curves, tangent, gradient, directional derivative, total differential.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Extrema of functions of several variables	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Double and triple integration, volume, area, surface area by it.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 4: Line, surface integral. Green, Stokes, Divergence theorem and applications.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Numerical Methods (Including Practical)

Paper Code: MAT-HC-4026

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Learn some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system of linear equations, up to a	Unit 1: Algorithms, convergence, Solution of system of equations by different methods, LU decomposition	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
certain given level of precision. ii) Know about methods to solve system of linear equations, such as False position method, Fixed point iteration method, Newton's method, Secant method and LU decomposition.	Unit 2: Lagrange and Newton interpolation, finite difference operators.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
 iii) Interpolation techniques to compute the values for a tabulated function at points not in the table. iv) Applications of numerical differentiation and integration to convert differential equations into difference equations for numerical solutions. 	Unit 3: Numerical differentiation and integration. Trapezoidal, Simpson's and Euler's rule.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Ring Theory

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) appreciate the significance of unique factorization in rings and integral domains ii) learn about fundamental concepts of ring, integral domains and fields. iii) know about ring homomorphism and isomorphisms theorems of rings. iv)learn about polynomial rings over commutative rings and about UFD.	Unit 1: Definition, examples and properties of rings, sub ring, ideal, integral domains, fields. Isomorphisms and homomorphisms of rings and related theorems.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Polynomial rings over commutative rings, division algorithm, principal and prime ideals, UFD and Euclidean domains, divisibility in integral domains.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

4th Semester (Honours)

Paper Name: Multivariate Calculus

Paper Code: MAT-HC-4016

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Learn the conceptual variations when advancing in calculus from one variable to multivariable discussion. ii) Understand the maximization and minimization of multivariable functions subject to the given constraints iii) Learn about inter-relationship amongst the line integral, double and triple integral formulations. iv) Familiarize with Green's, Stokes' and Gauss divergence theorems.	Unit 1: Functions of several variables, limit, continuity, partial derivatives, chain rule, level curves, tangent, gradient, directional derivative, total differential.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Extrema of functions of several variables	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Double and triple integration, volume, area, surface area by it.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 4: Line, surface integral. Green, Stokes, Divergence theorem and applications.	Interactive lectures, Problem solving sessions, PPT,	Assignments, Quizzes, Class tests

5th Semester (Honours)

Paper Name: Complex Analysis (Including Practical)

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
The course will enable the students to; i) Learn the significance of differentiability of complex functions leading to the understanding ofCauchy-Riemann equations.	Unit 1: Function of a complex variable. Limit, continuity, differentiability of complex numbers. Cauchy Riemann equations.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
 ii) Learn some elementary functions and can evaluate the contour integrals. iii)Understand the role of Cauchy-Goursat theorem and the Cauchy integral formula and their applications in evaluating complex 	Unit 2: Analytic functions, harmonic functions, exponential, logarithmic and trigonometric functions, derivative and definite integral of functions.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

integrals.			
	Unit 3: Contours, contour integrals and examples	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes Class tests
	Unit 4: Antiderivative, Cauchy-Goursat theorem, Cauchy integral formula, Liouville's theorem and fundamental theorem of algebra.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Linear Algebra

Paper Code: MAT-HC-5026

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i)Learn about the concept of linear independence of vectors over a field, dimension of a vector space. ii) Basic concepts of linear transformations, dimension theorem, matrix representation of LT and change of co-ordinate matrix. iii) Compute characteristic polynomial, eigen values, eigen vectors, eigen space. Apply basic diagonalization results. iv) Compute inner products and determine orthogonality on vector spaces.	Unit 1: Vector spaces, subspaces, null and column space, linear transformations, kernel, range, base, dimension, rank of vector space, change of basis.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Eigen vectors and eigen values of a matrix, the characteristics equation, diagonalization, eigen vectors of a LT, complex eigen values. Invariant subspaces and Caley Hamilton theorem.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Inner product, length, orthogonality, orthogonal sets and projections. Gram Schmidt process, inner product space. Diagonalization of symmetric matrices and spectral theorem.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Number Theory

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
----------------	-------------------	-------------------------	----------------------

This course will enable the students to: i) Learn about some fascinating discoveries related to the properties of prime numbers, and some of the open problems in number theory, viz., Goldbach conjecture etc. ii) Know about number theoretic functions and modular arithmetic.	Unit 1: Linear Diophantine equation, prime counting function, Goldbach conjecture, linear congruence, residue, dhinese remainder theorem, Fermat's Little theorem, Wilson's theorem.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
iii) Solve linear, quadratic and system of linear congruence equations.	Unit 2: Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of Dirichlet product, Mobius inversion formula, the greatest integer function, Euler's phi function, Euler's theorem, residue.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Programming in C (Including Practical)

Paper Code: MAT-HE-5066

-1

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Understand and apply the programming concepts of C which is important to mathematical investigation and problem solving. ii) Learn about structured data types in	Unit 1: Variables, constants, different terms related to C and its library functions, structure of a C program, input/output functions and statements.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
 C and learn about structured data types in C and learn aboutdifferent applications iii)Represent the outputs of programs visually in terms of well formatted text and plots. iv) Practical will enable the students to create and evaluate different problems using C 	Unit 2: Control statements, if-else statements, switch statement-	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Arrays and subscripted variables, function, function declaration, actual and formal arguments, function prototype, recursive function.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

6th Semester (Honours)

Paper Name: Riemann Integration and Metric spaces

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Learn about some of the classes and properties of Riemann integrable functions, and the applications of the Fundamental theorems of integration. ii) Know about improper integrals including, beta and gamma functions.	Unit 1: Riemann integration concepts and some related theorems. Concepts of improper integrals, Gamma functions.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
 iii) Learn various natural and abstract formulations of distance on the sets of usual or unusual entities. Become aware one such formulations leading to metric spaces. iv) Analyse how a theory advances from a particular frame to a general frame. v) Appreciate the mathematical understanding of various geometrical concepts, viz. Balls or connected sets etc. in an abstract setting. 	Unit 2: Metric spaces, definition, examples sequence and Cauchy sequence, open and closed ball, complete metric space, subspace, dense and separable space.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Continuous mappings, sequential criterion, uniform continuity, homeomorphism, contraction mapping, connectedness.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Partial Differential Equations (Including practical)

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Formulate, classify and transform first order PDEs into canonical form. ii) Learn about method of characteristics and separation of	Unit 1: Introduction, classification, construction of first order PDE, Cauchy problem, Integral surface, Cauchy, Charpit and Jacobi's method of solution.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
variables to solve first order PDE's. iii) Classify and solve second order linear PDEs.	Unit 2: Canonical form of 1 st order PDE, Method of separation of variables	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
iv) Learn about Cauchy problem for second order PDE and homogeneous as well as non-homogeneous wave equations.	Unit 3: Reduction to canonical forms, equations with constant co-efficients, general solution.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Project Paper

Paper Code: MAT-HE-6086

COURSE OUTCOMES (Generic and Regular Courses)

1st Semester

Paper Name: Calculus

Paper Code: MAT-HG-1016/ MAT-RC-1016

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
Completion of the course will enable the students to: i) Understand continuity and	Unit 1: Graph of different functions	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
differentiability in terms of limit. ii) Describe asymptotic behaviour in terms of limit involving infinity.	Unit 2: Limits and continuity of functions, properties of continuous functions, intermediate value theorem.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
 iii) Understand importance of Mean value theorems. iv) Use derivative to explore behavior of a function and graphing it. 	Unit 3: Differentiability, successive differentiation, Leibnitz theorem, higher order derivatives.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 4: Rolle's Theorem, Lagrange's mean value theorem, geometrical interpretation and application, Taylor;s theorem, Maclaurin's theorem,	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 5: Functions of two and more variables, level curves, partial differentiation.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

2nd Semester

Paper Name: Algebra

Paper Code: MAT-HG-2016/ MAT-RC-2016

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Learn to solve cubic and	equations, De Moivre's Theorem, roots of	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

biquadratic equations. Also learn relation between the roots and coefficients and its uses. ii) Employ De Moivre's theorem in a number of applications.	Unit 2: Matrices, algebra, row echelon and reduced row echelon form, inverse, rank, solution of system of equations.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
iii) Recognize consistent and inconsistent system of equations by row echelon form of matrix. Learn to find rank and inverse. iv) Learn basic ideas of group, subgroup, permutation group, cyclic group and preliminary knowledge of rings.	Unit 3: Groups and rings. Permutation and cyclic groups.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

3rd Semester

1.1

Paper Name: Differential Equations

Paper Code: MAT-HG-3016/ MAT-RC-3016

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i)Learn basics of differential equations and it's applications ii) Learn to classify 1 st order linear differential equations and different methods of solutions. iii) Learn to solve 2 nd order linear homogeneous as well as non- homogeneous differential equations by different methods.	Unit 1: First order equations and methods of solutions, orthogonal and oblique trajectories, Wronskian and its properties.	Interactive lectures, Problem solving sessions, PPT,	Assignments, Quizzes, Class tests
	Unit 2: Solutions of 2 nd order linear homogeneous and non-homogeneous equations, Cauchy-Euler equations, simultaneous equations.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

4th Semester

Paper Name: Real Analysis

Paper Code: MAT-HG-4016/ MAT-RC-4016

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Understand many properties of real line R, including Archimedean and completeness properties. ii) Learn to define sequences in terms of functions from R to a	properties of real numbers, open and closed sets. Limits	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

subset of R. iii) Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior and limits of bounded sequences. iv) Learn to apply different tests to test convergence of infinite series.		Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
--	--	--	--------------------------------------

5th Semester

12

Paper Name: Number Theory

Paper Code: MAT-RE-5016

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Learn about some fascinating discoveries related to the properties of prime numbers, and some of the open problems in number theory, viz., Goldbach conjecture etc. ii) Know about number theoretic functions and modular arithmetic.	Unit 1: Linear Diophantine equation, prime counting function, Goldbach conjecture, linear congruence, residue, Chinese remainder theorem, Fermat's Little theorem, Wilson's theorem.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
iii) Solve linear, quadratic and system of linear congruence equations.	Unit 2: Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of Dirichlet product, Mobius inversion formula, the greatest integer function, Euler's phi function, Euler's theorem, residue.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

6th Semester

Paper Name: Numerical Analysis

Paper Code: MAT-RE-6016

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
----------------	-------------------	-------------------------	----------------------

This course will enable the students to: i) Learn some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system of linear equations, up to a certain given level of precision. ii) Know about iterative and non- iterative methods to solve system of linear equations. iii) Know interpolation techniques to compute the values for a tabulated function at points not in the table. iv) Integrate a definite integral that cannot be done analytically. v) Find numerical differentiation of	Unit 1: Gaussian elimination method (with row pivoting), Gauss- Jordan method; Iterative methods: Jacobi method, Gauss-Seidel method; Interpolation: Lagrange form, Newton form, Finite difference operators, Gregory-Newton forward and backward difference interpolations, Piecewise polynomial interpolation (Linear and Quadratic).	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
functional values. vi) Solve differential equations that cannot be solved by analytical methods.	Unit 2: Numerical differentiation: First and second order derivatives; Numerical integration: Trapezoid rule, Simpson's rule; Extrapolation methods: Richardson extrapolation, Romberg integration; Ordinary differential equation: Euler's method, Modified Euler's methods (Heun and Mid- point).	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Department of Mathematics Nalbari College, Nalbari

Programme Specific Outcome (B. Sc Mathematics Honours and Generic/Regular)

The Completion of the B. Sc Mathematics Program shall enable a student to:

- 1. Communicate Mathematics effectively by oral, written, computational and graphic means.
- 2. Create Mathematical ideas from basic axioms.
- 3. Gauge the hypothesis, theories, techniques and proofs provisionally.
- Utilize Mathematics to solve theoretical and applied problems by critical understanding, analysis and synthesis.
- Identify applications of Mathematics in other disciplines and in the real world, leading to enhancement of career prospects in a plethora of fields.
- 6. Appreciate the requirement of lifelong learning through continued education and research.

COURSE OUTCOMES

1st Semester (Honours Courses)

Paper Name: Calculus (Including Practical)

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Learn first and second derivative tests for relative extremum and apply the knowledge in problems in business, economics and life sciences. ii) Sketch curves in a plane using its mathematical properties in different coordinate systems. iii) Compute area of surfaces of revolution and the volume of solids by integrating over cross-sectional areas. iv) Understand the calculus of vector functions and its use to develop the basic principles of planetary motion.	Unit 1: Higher order derivatives, Leibnitz's rule and its application. Concavity and inflection points, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L- Hopital's rule, applications in business, economics and life sciences.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Reduction formulae for integration and its derivation. Volumes by slicing, disks and washers' methods, volumes by cylindrical shells, parameterizing a curve, arc length, arc length of parameteric curves, area of surface of revolution.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions, tangent and normal components of acceleration, modelling ballistics and planetary motion, Kepler's second law.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Algebra

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Employ De Moivre's theorem in a number of applications to solve numerical problems. ii) Learn about equivalent classes and cardinality of a set. iii) Use modular arithmetic and basic properties of congruences, iv) Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix. v) Learn about the solution sets of linear systems using matrix method and Cramer's rule	Unit 1: Polar representation of complex numbers, n th roots of unity, De Moivre's theorem and its applications.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Mathematical logic, sets, functions.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Relations, Induction principles, GCD of integers	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 4: Linear equations, solution sets of linear system, matrix and it's applications.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

2nd Semester (Honours Courses)

Paper Name: Real analysis

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
Course Outcome This course will enable the students to: i) Understand many properties of the real line R, including completeness and Archimedean properties. ii) Learn to define sequences in terms of functions from N to a subset of R. iii) Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior, and the limit of a bounded sequence.	Unit 1: Algebraic and order properties of R, absolute value and real line, bounded sets, supremum and infimum, completeness property of R, the Archimedean property, the density theorem, intervals, nested interval theorem.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Real sequences and its convergence, limit and its theorems, Cauchy sequences, Cauchy's convergence criterion.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Infinite series and its convergence, Cauchy criterion, Tests for convergence.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Differential Equations (Including Practical)

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Learn basics of differential equations and mathematical modeling. ii) Formulate differential equations for various mathematical models. iii) Solve first order non-linear differential equations and linear differential equations of higher order usingvarious techniques. iv) Apply these techniques to solve and analyze various mathematical models.	Unit 1: Basics of Mathematical Model, solution of 1 st order differential equations, various types of 1 st order differential equations and finding its solutions.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Introduction and analysis of different mathematical models using differential equations.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Solutions of 2 nd order differential equations, Wronskian, linear homogeneous and non homogeneous equations of higher order with constant coefficients.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

3rd Semester (Honours)

Paper Name: Theory of Real functions

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Have a rigorous understanding of the concept of limit of a function. ii) Learn about continuity and uniform continuity of functions defined on intervals. iii) Understand geometrical properties of continuous functions on closed and bounded intervals. iv) Learn extensively about the concept of differentiability using limits, leading to a better understanding for applications.	Unit 1: Limit point of sets, limits of functions and its related various theorems and definitions.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Continuous functions and related theorems, uniform continuity.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit3: Differentiability of a function and related theorems, Taylor's theorem and applications to inequalities, Taylor's series expansion.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Group Theory-1

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutationgroups, etc.	Unit 1: Definition and examples of group, subgroups, cyclic groups.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
 ii) Link the fundamental concepts of groups and symmetrical figures. iii) Analyze the subgroups of cyclic groups and classify subgroups of cyclic groups. iv) Explain the significance of the notion of cosets, normal subgroups 	Unit 2: Permutations, Lagrange's theorem, normal subgroups and factor groups.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
and factor groups. v) Learn about Lagrange's theorem and Fermat's Little theorem. vi) Know about group homomorphisms and group isomorphisms.	Unit 3: Group homomorphism and related theorems.	Interactive lectures, Problem solving sessions, PPT,	Assignments, Quizzes, Class tests

Paper Name: Analytical Geometry

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Learn conic sections and transform co-ordinate systems ii) Learn polar equation of a conic, tangent, normal and properties iii) Have a rigorous understanding of the concept of three dimensional coordinates system.	Unit 1: Transformation of co- ordinates, pair of straight lines, different types of conics with general form.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Plane, sphere, cone, cylinder, central conicoid, ellipsoid, hyperboloid of one and two sheets, diametral planes, tangent lines, director sphere, polar plane, section with a given center.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

4th Semester (Honours)

Paper Name: Multivariate Calculus

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Learn the conceptual variations when advancing in calculus from one variable to multivariable discussion. ii) Understand the maximization and minimization of multivariable functions subject to the given constraints iii) Learn about inter-relationship amongst the line integral, double and triple integral formulations. iv) Familiarize with Green's, Stokes' and Gauss divergence theorems.	Unit 1: Functions of several variables, limit, continuity, partial derivatives, chain rule, level curves, tangent, gradient, directional derivative, total differential.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Extrema of functions of several variables	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Double and triple integration, volume, area, surface area by it.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 4: Line, surface integral. Green, Stokes, Divergence theorem and applications.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quìzzes, Class tests

Paper Name: Numerical Methods (Including Practical)

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Learn some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system of linear equations, up to a	Unit 1: Algorithms, convergence, Solution of system of equations by different methods, LU decomposition	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
certain given level of precision. ii) Know about methods to solve system of linear equations, such as False position method, Fixed point iteration method, Newton's method, Secant method and LU decomposition.	Unit 2: Lagrange and Newton interpolation, finite difference operators.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
 iii) Interpolation techniques to compute the values for a tabulated function at points not in the table, iv) Applications of numerical differentiation and integration to convert differential equations into difference equations for numerical solutions. 	Unit 3: Numerical differentiation and integration. Trapezoidal, Simpson's and Euler's rule.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Ring Theory

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) appreciate the significance of unique factorization in rings and integral domains ii) learn about fundamental concepts of ring, integral domains and fields. iii) know about ring homomorphism and isomorphisms theorems of rings. iv)learn about polynomial rings over commutative rings and about UFD.	Unit 1: Definition, examples and properties of rings, sub ring, ideal, integral domains, fields. Isomorphisms and homomorphisms of rings and related theorems.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Polynomial rings over commutative rings, division algorithm, principal and prime ideals, UFD and Euclidean domains, divisibility in integral domains,	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

4th Semester (Honours)

Paper Name: Multivariate Calculus

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Learn the conceptual variations when advancing in calculus from one variable to multivariable discussion. ii) Understand the maximization and minimization of multivariable functions subject to the given constraints iii) Learn about inter-relationship amongst the line integral, double and triple integral formulations. iv) Familiarize with Green's, Stokes' and Gauss divergence theorems.	Unit 1: Functions of several variables, limit, continuity, partial derivatives, chain rule, level curves, tangent, gradient, directional derivative, total differential.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Extrema of functions of several variables	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Double and triple integration, volume, area, surface area by it.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 4: Line, surface integral. Green, Stokes, Divergence theorem and applications.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

5th Semester (Honours)

Paper Name: Complex Analysis (Including Practical)

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Learn the significance of differentiability of complex functions leading to the understanding ofCauchy-Riemann equations.	Unit 1: Function of a complex variable, Limit, continuity, differentiability of complex numbers. Cauchy Riemann equations.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
 ii) Learn some elementary functions and can evaluate the contour integrals. iii)Understand the role of Cauchy–Goursat theorem and the Cauchy integral formula and their applications in evaluating complex integrals. 	Unit 2: Analytic functions, harmonic functions, exponential, logarithmic and trigonometric functions, derivative and definite integral of functions.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
integrals.	Unit 3: Contours, contour integrals and examples	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 4: Antiderivative, Cauchy-Goursat theorem, Cauchy integral formula, Liouville's theorem and fundamental theorem of algebra.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Linear Algebra

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Mcthod
The course will enable the students to: i)Learn about the concept of linear independence of vectors over a field, dimension of a vector space. ii) Basic concepts of linear transformations, dimension theorem, matrix representation of LT and change of co-ordinate matrix. iii) Compute characteristic polynomial, eigen values, eigen vectors, eigen space. Apply basic diagonalization results. iv) Compute inner products and determine orthogonality on vector spaces.	Unit 1: Vector spaces, subspaces, null and column space, linear transformations, kernel, range, base, dimension, rank of vector space, change of basis.	Interactive lectures, Problem solving sessions, PPT,	Assignments, Quizzes, Class tests
	Unit 2: Eigen vectors and eigen values of a matrix, the characteristics equation, diagonalization, eigen vectors of a LT, complex eigen values. Invariant subspaces and Caley Hamilton theorem.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Inner product, length, orthogonality, orthogonal sets and projections. Gram Schmidt process, inner product space. Diagonalization of symmetric matrices and spectral theorem.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Number Theory

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Learn about some fascinating discoveries related to the properties of prime numbers, and some of the open problems in number theory, viz., Goldbach conjecture etc. ii) Know about number theoretic functions and modular arithmetic.	Unit 1: Linear Diophantine equation, prime counting function, Goldbach conjecture, linear congruence, residue, dhinese remainder theorem, Fermat's Little theorem, Wilson's theorem.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
iii) Solve linear, quadratic and system of linear congruence equations.	Unit 2: Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of Dirichlet product, Mobius inversion formula, the greatest integer function, Euler's phi function, Euler's theorem, residue.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Programming in C (Including Practical)

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Understand and apply the programming concepts of C which is important to mathematical investigation and problem solving. ii) Learn about structured data types in C and learn aboutdifferent applications iii)Represent the outputs of programs visually in terms of well formatted text and plots. iv) Practical will enable the students to create and evaluate different problems using C	Unit 1: Variables, constants, different terms related to C and its library functions, structure of a C program, input/output functions and statements.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Control statements, if-else statements, switch statement:	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Arrays and subscripted variables, function, function declaration, actual and formal arguments, function prototype, recursive function.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

6th Semester (Honours)

Paper Name: Riemann Integration and Metric spaces

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Learn about some of the classes and properties of Riemann integrable functions, and the applications of the Fundamental theorems of integration. ii) Know about improper integrals including, beta and gamma functions. iii) Learn various natural and abstract formulations of distance on the sets of usual or unusual entities. Become aware one such formulations leading to metric spaces. iv) Analyse how a theory advances from a particular frame to a general frame. v) Appreciate the mathematical understanding of various geometrical concepts, viz. Balls or connected sets etc. in an abstract setting.	Unit 1: Riemann integration concepts and some related theorems. Concepts of improper integrals, Gamma functions.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Metric spaces, definition, examples sequence and Cauchy sequence, open and closed ball, complete metric space, subspace, dense and separable space.	Interactive lectures, Problem solving sessions, PPT,	Assignments, Quizzes, Class tests
	Unit 3: Continuous mappings, sequential criterion, uniform continuity, homeomorphism, contraction mapping, connectedness.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Paper Name: Partial Differential Equations (Including practical)

Paper Code: MAT-HC-6026

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Formulate, classify and transform first order PDEs into canonical form. ii) Learn about method of characteristics and separation of	Unit 1: Introduction, classification, construction of first order PDE, Cauchy problem, Integral surface, Cauchy, Charpit and Jacobi's method of solution.	Interactive lectures, Problem solving sessions, PPT,	Assignments, Quizzes, Class tests
variables to solve first order PDE's. iii) Classify and solve second order linear PDEs.	Unit 2: Canonical form of 1 ^{eff} order PDE, Method of separation of variables	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
iv) Learn about Cauchy problem for second order PDE and homogeneous as well as non-homogeneous wave equations.	Unit 3: Reduction to canonical forms, equations with constant co-efficients, general solution.	Interactive lectures, Problem solving sessions, PPT,	Assignments, Quizzes, Class tests

Paper Name: Project Paper

Paper Code: MAT-HE-6086

In this paper students are encouraged to select a topic of their interest from our UG syllabus to prepare a small report. All the students are assigned a mentor to carry out the same. Further, seminars are hold with the guidance of their respective mentors every month to assess their progress. In a way, the project paper helps our students to get a rough idea about how researches are carried out in various fields of Mathematics, thereby encouraging them to pursue PhD.

COURSE OUTCOMES (Generic and Regular Courses)

1st Semester

Paper Name: Calculus

Paper Code: MAT-HG-1016/ MAT-RC-1016

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
Completion of the course will enable the students to: i) Understand continuity and differentiability in terms of limit. ii) Describe asymptotic behaviour in terms of limit involving infinity.	Unit 1: Graph of different functions	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Limits and continuity of functions, properties of continuous functions, intermediate value theorem.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
 iii) Understand importance of Mean value theorems. iv) Use derivative to explore behavior of a function and graphing it. 	Unit 3: Differentiability, successive differentiation, Leibnitz theorem, higher order derivatives.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 4: Rolle's Theorem, Lagrange's mean value theorem, geometrical interpretation and application, Taylor;s theorem, Maclaurin's theorem,	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 5: Functions of two and more variables, level curves, partial differentiation.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

2nd Semester

Paper Name: Algebra

Paper Code: MAT-HG-2016/ MAT-RC-2016

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
The course will enable the students to: i) Learn to solve cubic and biquadratic equations. Also learn relation between the roots and coefficients and its uses. ii) Employ De Moivre's theorem in a number of applications. iii) Recognize consistent and inconsistent system of equations by row echelon form of matrix. Learn to find rank and inverse. iv) Learn basic ideas of group, subgroup, permutation group, cyclic group and preliminary knowledge of rings.	Unit 1: Theory of equations, De Moivre's Theorem, roots of complex numbers.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Matrices, algebra, row echelon and reduced row echelon form, inverse, rank, solution of system of equations.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 3: Groups and rings. Permutation and cyclic groups.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

3rd Semester

Paper Name: Differential Equations

Paper Code: MAT-HG-3016/ MAT-RC-3016

Course Outcome	Unit no. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i)Learn basics of differential equations and it's applications ii) Learn to classify 1 st order linear differential equations and different methods of solutions. iii) Learn to solve 2 nd order linear homogeneous as well as non- homogeneous differential equations by different methods.	Unit 1: First order equations and methods of solutions, orthogonal and oblique trajectories, Wronskian and its properties.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
	Unit 2: Solutions of 2 nd order linear homogeneous and non-homogeneous equations, Cauchy-Euler equations, simultaneous equations.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

4th Semester

Paper Name: Real Analysis

Paper Code: MAT-HG-4016/ MAT-RC-4016

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method Assignments, Quizzes, Class tests	
This course will enable the students to: i) Understand many properties of real line R, including Archimedean and completeness properties. ii) Learn to define sequences in terms of functions from R to a	Unit 1: Algebraic and order properties of real numbers, open and closed sets. Limits and continuity of a function and their properties, uniform continuity.	Interactive lectures, Problem solving sessions, PPT.		
subset of R. iii) Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior and limits of bounded sequences. iv) Learn to apply different tests to test convergence of infinite series.	Unit 2: Sequences, convergent and Cauchy sequences, subsequences, limits of sequence. Infinite series and convergence.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests	

5th Semester

Paper Name: Number Theory

Paper Code: MAT-RE-5016

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Learn about some fascinating discoveries related to the properties of prime numbers, and some of the open problems in number theory, viz., Goldbach conjecture etc. ii) Know about number theoretic	Unit 1: Linear Diophantine equation, prime counting function, Goldbach conjecture, linear congruence, residue, Chinese remainder theorem, Fermat's Little theorem, Wilson's theorem.	Interactive lectures, Problem solving sessions, PPT,	Assignments, Quizzes, Class tests
functions and modular arithmetic. iii) Solve linear, quadratic and system of linear congruence equations.	Unit 2: Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of Dirichlet product, Mobius inversion formula, the greatest integer function, Euler's phi function, Euler's theorem, residue.	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

6th Semester

Paper Name: Numerical Analysis

Paper Code: MAT-RE-6016

Course Outcome	Unit No. and Name	Teaching Methodology	Assessment Method
This course will enable the students to: i) Learn some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system of linear equations, up to a certain given level of precision. ii) Know about iterative and non- iterative methods to solve system of linear equations. iii) Know interpolation techniques to compute the values for a tabulated function at points not in the table. iv) Integrate a definite integral that cannot be done analytically. v) Find numerical differentiation of	Unit 1: Gaussian elimination method (with row pivoting), Gauss- Jordan method; Iterative methods: Jacobi method, Gauss-Seidel method; Interpolation: Lagrange form, Newton form, Finite difference operators, Gregory-Newton forward and backward difference interpolations, Piecewise polynomial interpolation (Linear and Quadratic).	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests
functional values. vi) Solve differential equations that cannot be solved by analytical methods.	Unit 2: Numerical differentiation: First and second order derivatives; Numerical integration: Trapezoid rule, Simpson's rule; Extrapolation methods: Richardson extrapolation, Romberg integration; Ordinary differential equation: Euler's method, Modified Euler's methods (Heun and Mid- point).	Interactive lectures, Problem solving sessions, PPT.	Assignments, Quizzes, Class tests

Contents of Course File

Dr. Dhanju Mani Pathak Assistant Professor, Department of Chemistry

1. Vision & Mission of the Institute:

Vision:

- To provide outstanding education and training to our learners to achieve their goals.
- To reach out to the unreached.
- ✓ To forge institutional, departmental and individual linkage with society.
- To turn the college into a nodal facilitating centre for inclusive and sustainable development of the region.

Mission:

- To impart quality education to the learners.
- To create better academic environment in order to produce competent and industrious human resource.
- To Provide student- centered academic and personal enrichment opportunities to enhance lifelong learning.
- To make education more relevant in the global perspective.
- ✓ To expand and accommodte with the changing traits of higher education.

2. Program Outcomes (POs):

After completing B.Sc the students are expected to:

- Acquire the knowledge with the facts related to various subjects in pure sciences.
- Acquire the skills in handling scientific instruments and performing in laboratory experiments
- > The skills of observations and inferences from the scientific experiments.
- Analyze the given scientific data systematically and the ability to draw the conclusions.
- > Be able to think creatively to propose novel ideas.
- Understand the basic concepts, fundamental principles, and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.
- Understand the issues of environmental contexts and sustainable development.
- Develop scientific outlook not only with respect to science subjects but also in all aspects related to life.
- Develop various communication skills such as reading, listening, speaking, etc., which will help in expressing ideas and views clearly and effectively.

- Develop elegance by participating in various social and cultural activities, in order to spread knowledge, creating awareness about the social problems, blind faith, etc.
- 3. Program Specific Outcomes (PSO): Attached separately
- 4. Course Outcomes (COs): Described in the teaching plan
- 5. Class Time Table: Attached separately
- 6. Academic Calendar: Attached separately
- 7. Syllabus: As per G. U syllabus (Attached separately)
- 8. Teaching method for each unit of the syllabus: Attached as Teaching Plan
- 9. Assessment method for each unit: Described in Teaching Plan
- 10. Lecture notes (Hand written/typed)
- 11. Consolidated attendance statement of students: Xerox copy of the attendance register
- 12. Consolidated semester grades of students

13. Result analysis

 Sample copies of evaluated answer scripts of Class test, assignments, tutorials, lab records, Mid, End semester exams (Highest, average and marginal pass)

DEPARTMENT OF CHEMISTRY NALBARI COLLEGE, NALBARI

Programme Specific Outcome

After successful completion of B.Sc. (CBCS) degree with Honours in Chemistry, a student will be able to acquire the following:

- Basic knowledge of Chemistry which they can apply in their future course of action.
- The Skill Enhancement Courses (SEC) help them to enrich their subject knowledge with reference to their practical applicability.
- Discipline Specific Courses (DSE) also broaden their domain of understanding the subject.
- Become eligible and competent enough to qualify various National level competitive examinations (viz. JAM, CUET etc.) necessary for entry to higher studies.
- Develop various relevant logical and analytical skill which are useful to serve their capabilities for academia, entrepreneurship and industry.
- Disciplined and confident enough to get absorbed in various employable sectors.

Time Table (Even Semester): 2	023, Department of Chemistr	y, Naibari College, Nalbari
-------------------------------	-----------------------------	-----------------------------

Day	9.30-10.30	10.30- 11.30	11.30-12.30	12.30- 1.30	1.30-2.30	2.30-3,30	3.30-4.30	4.30-5.30	5.30-
Mon	HC-2S-DP	HC-4S-RS HC-6S-DT	SEC-4S-PS	HS-R7-PT HC-4S-PB	RE-65- Dept-DP	RC/GE-2S- R9-PB	RC/GE 4S-R10- PT		
DT: T=6,P=10	HC-65-Dessertaion			HC-6S-P5	HC-6s Practi HC-4sPractic RC-4S Practic	calRS	RC/GE-2S Practi	calRS	
1.0,1 - 20	H.S practical	ND	HC-25 Practical	DP	NC-45 Place	(CalP1	1		1
Tue	HC-25-RS HC-65-PB	HC-45-ND HC-65-DT	SEC-4S-PS	HC-4S-RS HC-6S-ND	HC-6s Practi HC-4sPractic	alRS	HS-R7-P5	RC/GE 4S- R10-PT	
ND: T=6, P=10		HS1 R10		RE-6S R8- PB	RC-45 Practi	calPT	RC/GE-2S Practi	calRS	
	H.S practical	PS	HC-2S Practical-	DP					
Wed	HC-25-PB	HC-45-DT	RC/GE 4S-R9-RS	HC-45-DP		H.S -R7-PB	RE 6S pract	ical-PB	
-	HC-65-DP	HC-6S-PB	SEC-6S		HC-4sPracticalDP			SEC-4S prac	tical
DP: T=8, P=10	RC/GE-2S- R7-ND		HC-65 D		essertationAll			PS	
	H.S practical	RS	HC-2S Practical-	DT	A Lange	1			
Thu	HC-2S-DT	HC-4S-RS	RC/GE 4S-R7-DP	HC-45-P8	HC-4sPract	icalDP	RE 6S practi	ical-PB	
RS: T=8, P=10	HC-65-ND	HC-65-P5	SEC-6S HC-6S		essertation	All		SEC-4S pra PB	ctical-
	H.S practical	PB	HC-2S Practical	DT			1		
Fri	RC/GE 2S-R10-PT HC-45-PS	HC-4S-DP HC-6S-ND	HC2S-DT	<u>H.S R10-</u> <u>PT</u>	RE-6S- Dept-P8		GE4S practical	and the second se	
PS: T=8, P=10	HC-6S-RS			HC 25RS					
Action	H.S practical	DT	HC-6S practical (D	SE)ND	HC-4sPractic HC-6s Practic	the second s			
Sat PB: T=9,	HC-4S-ND	RC/GE2S- R10-PT	НС25-РВ	HC2S-DP		RE-6S-R8- DP	GEAS practical-		
P=10 <u>PT:</u> T=6,P=08	HC-6S-dessertation	HC-45-PS HC-6S-DT		HS- R10- RS	HC-4sPractic HC-6s Practic	A CONTRACTOR OF THE OWNER OWNE			
Constant Constant	H.S practical	DP	HC-6S practical (D	SE)ND					

Time Table 2023 (Odd Semester)

Day	900-10.00	10.00- 11.00	11.00-12.00	12.00-1.00	1.00-2.00	2.00- 3.00	3.00-4.00 4.00-5.00
Mon	H.S2s Practical- ND	Ge/Re-3s- R9-PS HC-5s-DP	HS-2S-R7-R5 HC-3S-PS RE-3s-Practical HC-5s-P8 RE-5S-practical-	HC-3s-PB HC-5s-DT RE-5s-R8-ND	MDC-R10-RS HC-3s Practical-DP HC-5s Practical-PB		G1-Practical-ND HG-3s Practical-DP SEC 3s-PS
Tues	HC-5s-ND H.S2s Practical PS	HC-5s-RS	G1s (A)-R10-ND G1s (B)-SB-01-PB HC-3S-PS RE-3s-Practical HC-Ss-DT RE-SS-practical-	HS1s-R9-ND HC-3s-RS HC-Ss-PS RE-5s-R8-DP	HC-3s Practical-DP HC-5s Practical-PB	HS-2s- R7-PS	G1-Practical-ND HG-3s Practical-DP
Wed	HS1s-R10-PB Ge/Re-3s-R9-DP HC-5s Practical- DT H.S2s Practical- RS		HC-35-ND RC -3s Practical-PB RE-5S practical HC-5s-DP	RE-5s-R8-PS HC-3s-RS	MDC-R10- ÖP HC-3s Practical-DT HC-5s Practical-RS		HS-2s- R9-DP G1- Practical- PS SEC 3s- PB
Thurs	HC-5s Practical- DT H.S2s Practical- PB	Ge/Re-3s R7-PS	HC-3S-DP HC-5S-RS RC-3s Practical-PB RE-SS practical-PS	HS1s-R10-RS HC-3s-ND HC-5s-DT	SEC-1sSB02-PB HC-3s Practical-DT HC-5s Practical-RS		G1-Practical-RS SEC 3s P-PS HS-2s-R7-DT
Fri	HC-5s-PS H.52s Practical DT	H51s-R7- ND HC-5s-PB	G1s (A)-SB01-DT G1s (B)-R10-PS HC-3S DP RE-3s-Practical HC-5s-RS RE-SS-practical-	HS-2s-R7-PB HC-3s-RS RE-5s-R8-ND	MDC/SEC-1Sp-sb- 02-PB HC-3s Practical-PS HC-5s Practical-ND		G1-Practical-PB
Sat	HC-5s-ND Ge/Re-3s-R7-PB H.52s Practical- DP	HC-Ss-DT	G1s (A)-R7-DP G1s (B)-R10-RS HC-35—DT HS15-R9-PS	HC-5s-RS HC-3s-PB RE-5S practical-PS	SEC-1s-PB HC-3s Practical PS HC-5s Practical-ND		G1-Practical-RS

1		1-2, 5, 7-9, 11-16, 18-23, 26-30	Working Days / Class Days					
		3, 10, 17, 24	Sunday				Freshmen Social	
3.	September	4	Holiday (Tithi of Sri Sri Madhabdeva)	7	23	23	during i* week of September Commencement of Odd Semester's i*	
		6	Holiday (Janmastomi)				of September	
		25	Holiday (Janmotsav of Srimanta Sankardeva)					
		3-7, 9-14, 16-17, 19	Working Days / Class Days					
		1, 8, 15, 22, 29	Sunday					
4	October	2	Holiday (Birthday of Mahatma Gandhi)	15	16	14	NCSU election & counting on 16 th and 17 th October	
		18	Holiday (Kati Bihu)		-			
		20 - 28	, Holiday (Durga Puja / Lakshmi Puja)					
1		1-4, 6-11, 14, 16-18, 20-23, 25, 28-30	Working days / Class Days					
		5, 12, 19, 26	Sunday				Odd semester 2nd	
		12, 13	Holiday (Kali Puja & Dipawali)				sessional examination During 2 rd week of November	
5	. Novembe	r 15	Holiday (Bhatri Dwitiya)	8	22	22		
-		19	Holiday (Chhat Puja)				Conduct of examination for U	
		24	Holiday (Lachit Divas)				Courses (odd semester) as per G notification	
		27	Holiday (Guru Nanak's Birthday)				notification	

Academic Calendar: 2023-2024 Nalbari College, Nalbari (Up to December 2023)

SI. No	Month/ Year	Dates	Working Day / Class Day / Examination Day / Holiday	No. of Holidays	No of Working Days	No of Teaching Days	Target Academic and other activities				
		01-31	Summer Vacation	1			Celebration of				
		4	Foundation Day of College	31			foundation day o Nalbari College on 4 th of July				
r	July	01-23					Completion of admission process for all HS & undergraduate programmes (HS 1 st Year & UG 1 st semester)				
		2-5, 7-12, 14, 16-17, 19, 21-26, 28-31	Working Days / Class Days				Completion of				
		1	Commencement of New Academic Session and Even Semester Classes					admission process for all postgraduate programmes (PG 1* semester) PNC memorial debate competition			
2.	August	6, 13, 20, 27	Sunday	6	24	24	and Prof. Kandarpa Kalita memorial				
	15	Independence Day		-						-	quiz competition during 2 rd and 4 th week of August
		18 Holiday (Tithi of Srimanta Sankardev)					Commencement of PG 1 st semester classes from 3 ^{rl} week of August				

		11 - 15, 17, 19 - 22, 26, 28 - 29, 31	Working Days / Class Days		-		
		2, 9, 16, 23, 30	Sunday				T-M
4	October 2023	01 - 10	Holiday (Durga Puja, Birthday of Mahatma Gandhi, Janmotsav of Srimanta Sankardev, Lakshmi Puja)	17	14	м	
		18	Holiday (Kati Bihu)				1.2
		24-25	Holiday (Kali Puja & Dipawali)				
-		27	Holiday (Bhai Dooj/Bhatri Dwitiya)		-		
		30	Holiday (Chhat Puja)				
		1-5, 7, 9 - 12, 14 - 19, 21 - 23, 25 - 26, 28 - 30	Working Day / Class Day				Odd semester 2 rd
	November	6, 13, 20, 27	Sunday	6	24	24	sessional examination during 2 nd week of
5.	2022	8	Holiday (Guru Nanak's Birthday)				November 2023
		24	Həliday (Lachit Dīvas)				
		1, 3, 5 - 10, 12 - 17, 19 - 24	Working Days / Class Days		1		
	-	4, 11, 18, 25	i Sunday				Odd semester fina examination (both UG & PG) as per
6.	Decembe 2022	r 2	Holiday (Asom Divas, Su-Ka- Pha Divas)	9	21	u	GU notification and HS 2 nd Year preparatory examination
		25	Holiday (Sunday & Christmas)				HS 1 st year classe to be continues
		26-31	Winter Vacation	1			

Academic Calendar: 2022-2023 Nalbari College, Nalbari

SL No	Month / Year	Dates	Working Day / Class Day / Examination Day / Holiday	No. of Holidays	No of Working Days	No of Class Days	Target Academic and other activities
		1+31	Summer Vacation		100		Coldmation
L	July 2022	4	Foundation Day of College	31			Celebration of foundation day or 4 th of July
	: August	1 -6, 8 - 13, 16 - 18, 20, 22 - 27, 30 - 31	Working Days / Class Days				Commencement o odd semester classes (Both PG/UG) from 1 ^{at} August - 2021 Completion of admission process for all postgraduato programmes (PG first semester)
1	2023 2023	7, 14, 21, 28	Sunday	7	2.4	24	PNC memorial debate competition and Prof. Kandarpa Kalita memorial quiz competition
		15	Independence Day				
		19	Holiday (Janmastomi)				during 2 ^{rel} and 4 th week of August
		29	Holiday (Tithi of Sri Sri Sankardev)	-			Commencement of PG first semester classes from 3 rd week of August
	September	1 - 3, 5 - 10, 12 - 13, 15 - 17, 19 - 24, 16 - 28	Working Days / Class Days				Preshmen Social during r ^a week of September Odd semester's r ^a sessional
3	2022	4, 11, 18, 25	Sunday	5	25	22	examination during 2** week of September
		14	Holiday (Tithi of Sri Sri Madhabdev)				NCSU election & counting during last week of September

		2 - 4, 6, 8 - 13, 15 - 20, 22 - 27, 29 - 31	Working Days / Class Days				Commencement of
н.	May 2033	7, 14, 21, 28	Sunday	6	25	15	even semester final examination as per GU
		I	May Day		-		notification
		5	Budddha Purnima				
12.	June	1 - 3, 5 - 10, 12 - 17, 19 - 24, 26 - 28	Working Days / Class Days	6			Commencement of even semester final examination for PG Courses as per GU notification Commencement of UG odd semester classes from 2 nd week of June
		4, 11, 18, 25	Sunday		24	24	
	2023	29 - 30	Holiday (Idd -Uz -Zuha)				Admission Proce for BA/B.Sc. 1 st set and HS 1 st year for session 2023-200 to be completed within June.

110

Summary

Odd Semester (July to Decemi	ber)
The second se	95
Class days Election/Freshman social	03
Holidays/Summer vacation	75
Final Examination	10
Total	183

Even Semester (January to Ju	ine)
Class days	111
College Week	07
Holidays / winter vacation	53
Final Examination	10
Total	181

XXXX

	50	17 - 21, 23, 25, 27 - 28, 30	Working Days / Class Days															
		1, 8, 15, 22, 29	Sunday				Commencement of											
		1+16	Winter Vacation / Magh Bihu															
	January 2023	24	Holiday (Gwther Bathou San)	21	10	١α	even semester classes from 3 rd week of January 2022											
	a	26	Holiday (Republic Day)															
		31	Holiday (Me -Dum - Me -Phi)															
		14, 6 - 11, 13 - 14, 16 - 17, 20 - 25, 27 - 28	Working Days / Class Days				College week during 1 st week of February											
8.	February	5, 12, 19, 26	Sunday		1		HS 2 rd year final examination as per AHSEC notification											
	2023	15	Holiday (Ali -Aye - Lingang)	6	22	15	Commencement of even semester 1* sessional											
		18	Holiday (Sivaratri)				examination during 4 th week of February											
		1-4, 6, 8-11, 13 - 18, 20-25, 27 - 31	Working Days / Class Days															
9.	March apag	5, 12, 19, 26	Sunday	5	16	26	HS 1 st year final examination as per											
- 1		6	Kavya Divas			53	AHSEC notification											
		7	Holiday (Dol Jatra)		(sente													
		1, 3 - 6, 8, 11 - 13, 17 , 21, 24 - 29	Working Days./ Class Days				TNG Memorial lecture during p ^a											
		2, 9, 16, 23, 30	Sunday				week of April Commencement of											
10.	April 2023	7	Good Friday	9	21	23	HS 2 nd year classes from last week of											
		14 - 16	Bohag Bihu				April Commencement of											
		22 - 23	Holiday (Idd -Ui -Fitre)				even semester 2 nd Sessional examination during 3 rd week of April											

		1, 4-9, 11-16, 18-23	Working Days, Class Days				Odd semester final
	6. December	3, 10, 17, 24, 31	Sunday		7 24		examination for PG courses as per GU notification and HS 2 rd Year preparatory examination
6.		2	Holiday (Asom Divas / Su-Ka-Pha Divas)	7			HS 1 st year classes to be continued Winter break starts
		25	Holiday (Christmas Day)				from last week of December
		26-31	Tentative time for Winter Break			1	

Contents of Course File

Dr. Dhiraj Talukdar Associate Professor & HoD, Department of Chemistry

- 1. Vision & Mission of the Institute:
 - Vision:
 - To provide outstanding education and training to our learners to achieve their goals.
 - To reach out to the unreached.
 - ✓ To forge institutional, departmental and individual linkage with society.
 - To turn the college into a nodal facilitating centre for inclusive and sustainable development of the region.

Mission:

- ✓ To impart quality education to the learners.
- To create better academic environment in order to produce competent and industrious human resource.
- To provide student- centered academic and personal enrichment opportunities to enhance lifelong learning.
- To make education more relevant in the global perspective.
- To expand and accommodte with the changing traits of higher education.

2. Program Outcomes (POs):

After completing B.Sc the students are expected to:

- Acquire the knowledge with the facts related to various subjects in pure sciences.
- Acquire the skills in handling scientific instruments and performing in laboratory experiments
- > The skills of observations and inferences from the scientific experiments.
- Analyze the given scientific data systematically and the ability to draw the conclusions.
- Be able to think creatively to propose novel ideas.
- Understand the basic concepts, fundamental principles, and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.
- > Understand the issues of environmental contexts and sustainable development.
- Develop scientific outlook not only with respect to science subjects but also in all aspects related to life.
- Develop various communication skills such as reading, listening, speaking, etc., which will help in expressing ideas and views clearly and effectively.
- Develop elegance by participating in various social and cultural activities, in order to spread knowledge, creating awareness about the social problems, blind faith, etc.

3. Program Specific Outcomes (PSO): Attached separately

4. Course Outcomes (COs): Described in the teaching plan

5. Class Time Table: Attached separately

6. Academic Calendar: Attached separately

7. Syllabus: As per G. U syllabus (Attached separately)

8. Teaching method for each unit of the syllabus: Attached in Teaching Plan

9. Assessment method for each unit: Described in Teaching Plan

10. Lecture notes (Hand written/typed)

11. Consolidated attendance statement of students: Xerox copy of the attendance register

12. Consolidated semester grades of students

13. Result analysis

14. Sample copies of evaluated answer scripts of Class test, assignments, tutorials, lab records, Mid, End semester exams (Highest, average and marginal pass)

DEPARTMENT OF CHEMISTRY NALBARI COLLEGE, NALBARI

Programme Specific Outcome

able to acquire the following After successful completion of B.Sc. (CBCS) degree with Honours in Chemistry, a student will be

- Basic knowledge of Chemistry which they can apply in their future course of action
- The Skill Enhancement Courses (SEC) help them to enrich their subject knowledge with reference to their practical applicability.
- Discipline Specific Courses (DSE) also broaden their domain of understanding the subject
- examinations (viz. JAM, CUET etc.) necessary for entry to higher studies. Become eligible and competent enough to qualify various National level competitive
- Develop various relevant logical and analytical skill which are useful to serve their capabilities for academia, entrepreneurship and industry.
- Disciplined and confident enough to get absorbed in various employable sectors.

Academic Calendar: 2022-2023 Nalbari College, Nalbari

SI. No	Month / Year	Dates	Working Day / Class Day / Examination Day / Holiday	No. of Holidays	No of Working Days	No of Class Days	Target Academic and other activities								
		1 - 31	Summer Vacation		~	~	Celebration of								
1.	July 2022	4	Foundation Day of College	31	0	V	foundation day on 4 th of July								
		1 - 6, 8 - 13, 16 - 18, 20, 22 - 27, 30 - 31	Working Days / Class Days	2	0	e	0	0	0	0	0	e	2		Commencement o odd semester classes (Both PG/UG) from 1 st August – 2021 Completion of admission process for all postgraduats programmes (PG first semester)
2.	August 2022	7, 14, 21, 28	Sunday Independence Day		24	24	PNC memorial debate competition and Prof. Kandarpa Kalita memorial quiz competition during 2 nd and 4 th week of August								
	3	. 19	Holiday (Janmastomi)												
		29	Holiday (Tithi of Sei Sei Sankardev)				Commencement o PG first semester classes from 3 rd week of August								
2	September	1 - 3, 5 - 10, 12 - 13, 15 -17, 19 - 24, 16 - 28	Working Days / Class Days				Freshmen Social during 1 st week of September Odd semester's 1 st sessional examination durin								
3	2022	4, 11, 18, 25	Sunday	5	25	22	2 nd week of September								
		14	Holiday (Tithi of Sri Sri Madhabdev)				NCSU election & counting during last week of September								

		11 - 15, 17, 19 - 22, 26, 28 - 29, 31	Working Days / Class Days				
		2, 9, 16, 23, 30	Sunday				
4.	October 2022	01 - 10	Holiday (Durga Puja, Birthday of Mahetma Gandhi, Janmotsav of Srimanta Sankardev, Lakshmi Puja)	17	14	14	
	07887-536	18	Holiday (Kati Bihu)			0	~
		24 - 25	Holiday (Kali Puja & Dipawali)		~	0	
		27	Holiday (Bhai Dooj/Bhatri Dwitiya)	~	4	>	
		30	Holiday (Chhat Puja)	Q.	7		
	-	1-5, 7, 9 - 12, 14 - 19, 21 - 23, 25 - 26, 28 - 30	Working Day / Class Day	/			
5.	November	6, 13, 20, 27	Sunday	6	24	24	Odd semester 2 nd sessional examination during
	2022	À	Holiday (Guru Nanak's Birthday)			-%	2 nd week of November 2022
	1	> 24	Holiday (Lachit Divas)				
	1	1, 3, 5 - 10, 12 - 17, 19 - 24	Working Days / Class Days				
		4, 11, 18, 25	Sunday				Odd semester final examination (both
6,	December 2022	2	Holiday (Asom Divas, Su-Ka- Pha Divas)	9	21	п	UG & PG) as per GU notification and HS 2 nd Year preparatory examination
		25	Holiday (Sunday & Christmas)				HS 1 st year classes to be continued
		26 -31	Winter Vacation				

5 7

		17-21, 23, 25, 27-28, 30	Working Days / Class Days				
		1, 8, 15, 22, 29	Sunday				Commencement of even semester classes from 3 rd week of January 2022
		1-16	Winter Vacation / Magh Bihu				
7-	January 2023	24	Holiday (Gwther Bathou San)	21	10	10	
	2	26	Holiday (Republic Day)				
		31	Holiday (Me -Dum - Me -Phi)		~	20	*
8.	February 2023	1-4, 6-11, 13-14, 16-17, 20-25, 27-28	Working Days / Class Days	20	0		College week during 1 st week of February
		5, 12, 19, 26	Sunday				HS and year final examination as per AHSEC notification
		15	Holiday (Ali -Aye - Lingang)		22	15	Commencement o even semester i st sessional
		18	Holiday (Sivaratri)				examination durin 4 th week of February
		1-4,6, 8+11, 13+18, 20+25, 27+31	Working Days / Class Days				
9.	March 2023	5, 12, 19, 26	Sunday	5	26	26	HS 1 st year final examination as per AHSEC notification
	0	6	Kavya Divas				A GOLD CHOULD CALLON
		7	Holiday (Dol Jatra)				
		1, 3 - 6, 8, 11 - 13, 17 - 21, 24 - 29	Working Days / Class Days				TNG Memorial lecture during 1 st week of April
	200	2, 9, 16, 23, 30	Sunday				Commencement of HS 2 nd year classes
10.	April 2023	7	Good Friday	9	21	21	from last week of April
		14 -16	Bohag Bihu				Commencement of even semester 2 nd
		22 - 23	Holiday (Idd -Ul -Fitre)				Sessional examination during 3 rd week of April

		2 - 4, 6, 8 - 13, 15 - 20, 22 - 27, 29 - 31	Working Days / Class Days				Commencement of
u.	May 2023	7, 14, 21, 28	Sunday	6	25	15	even semester final examination as per GU
		ī	May Day				notification
		5	Budddha Purnima				
	×.	1 - 3, 5 - 10, 12 - 17, 19 - 24, 26 - 28	Working Days / Class Days		~	~	Commencement o even semester fina examination for PC Courses as per GU notification
12.	June 2013	4, 11, 18, 25	Sunday	6	MS N	24	Commencement o UG odd semester classes from 2 nd week of June
		29 - 30	Holiday (Idd -Uz -Zuha)				Admission Process for BA/B.Sc. 1 st sem and HS 1 st year for session 2023 -2024 to be completed within fune.

2°

Summary

Odd Semester (July to Decem	iber)
Class days	95
Election/Freshman social	03
Holidays/Summer vacation	75
Final Examination	10
Total	183

Even Semester (January to J	une)
Class days	111
College Week	07
Holidays / winter vacation	53
Final Examination	10
Total	181

XXXX

Academic Calendar: 2023-2024 Nalbari College, Nalbari (Up to December 2023)

SI. No	Month/ Year	Dates	Working Day / Class Day / Examination Day / Holiday	No. of Holidays	No of Working Days	No of Teaching Days	Target Academic and other activities		
		01-31	Summer Vacation			0	Celebration of		
		4	Foundation Day of College	31		8	foundation day of Nalbari College on 4 th of July		
1.	July	01-23		e	2		Completion of admission process for all HS & undergraduate programmes (HS 1 ^{et} Year & UG 1 ^{et} semester)		
		2-5, 7-12, 14, 16-17, 19, 21-26, 28-31 Working Days / Class Days			Completion of				
		2,	Commencement of New Academic Session and Even Semester Classes				admission process for all postgraduate programmes (PG r ^{at} semester) PNC memorial debate competition		
2.	August	6, 13, 20, 27	Sunday	6	24	24	and Prof. Kandarpa Kalita memorial		
		15	Independence Day				quiz competition during 2 nd and 4 th week of August		
		18	Holiday (Tithi of Srimanta Sankardev)						Commencement of PG 1* semester classes from 3 rd week of August

		1-2, 5, 7-9, 11-16, 18-23, 26-30	Working Days / Class Days					
	~	3, 10, 17, 24	Sunday				Freshmen Social	
3	September	4	Holiday (Tithi of Sri Sri Madhabdeva)	7	23	22	during 1 st week of September Commencement of	
	-	6	Holiday (Janmastomi)				Odd Semester's 1 st sessional during 2 ⁻⁴ week of September	
		25	Holiday (Janmotsav of Srimanta Sankardeva)		1	1	0	
	I.,	3-7, 9-14, 16-17, 19	Working Days / Class Days	(>. >			
	4. October	1, 8, 15, 22, 29	Sunday	0,15	~			
4.		2	Holiday (Birthday of Mahatma Gandhi)		16	14	NCSU election & counting on 16 th and 17 th October	
		18	Holiday (Kati Bihu)				1.22	
		20 - 28	Holiday (Durga Puja / Lakshmi Puja)					
	~	1-4, 6-11, 14, 16-18, 20-23, 25, 28-30	Working days / Class Days					
	2	5, 12, 19, 26	Sunday				Odd semester 2 nd	
		12, 13	Holiday (Kali Puja & Dipawali)				sessional examination During 2 rd week of	
5.	November	15	Holiday (Bhatri Dwitiya)	8	22	22	November	
		19	Holiday (Chhat Puja)	1			Conduct of examination for UG	
		24	Holiday (Lachit Divas)				Courses (odd semester) as per GU	
		27	Holiday (Guru Nanak's Birthday)				semester) as per GU notification	

		1, 4-9, 11-16, 18-23	Working Days, Class Days			Odd semester final
		3, 10, 17, 24, 31	Sunday	L,		examination for PG courses as per GU notification and HS 2 nd Year preparator examination
6.	December	2	Holiday (Asom Divas / Su-Ka-Pha Divas)	7	24	HS 1 st year classes to be continued Winter break starts
		25	Holiday (Christmas Day)			from last week of December
		26-31	Tentative time for Winter Break			D'

0100

0.

COURSE FILE [For Undergraduate Programme]

Academic Year 2022-2023

Department of Philosophy Nalbari College, Nalbari, Assam

1. VISION AND MISSION OF THE DEPARTMENT

Vision

Nalbari College with eight decades of its glorious existence is guided by the motto Vidyayaa Vindate Amritam i.e. scholarship offers eternality. This profound vision encapsulates the institution's commitment to foster academic excellence and lifelong learning.

Mission

- To create better academic environment in order to produce competent and industrious human resource.
- To provide student centred academic and personal enrichment opportunities for encouraging lifelong learning.
- To accommodate and align with the changing traits of the higher education.
- To reach and empower the unreached.

2. PROGRAMME OFFERED BY THE DEPARTMENT

2.1. Programme Offered: 1. B. A. (Honours/Major)

2. B. A. (Regular/Minor)

2.2. Programme Outcomes (POs):

The Undergraduate Programme (B. A.) in Philosophy will enable a student to:

PO1	Through critical thinking, students will gain knowledge in the social sciences
	and humanities and be able to engage in and contribute to society.
PO2	Develop linguistic and analytical skills essential for advanced studies.
PO3	Develop students' capacity to engage with social and national issues, applying
	theoretical knowledge gained in the classroom.
PO4	Cultivate and understanding of contemporary societal challenges such as
	environmental crisis, human rights violation, gender inequalities etc.
PO5	Students learn how to conduct primary research and are so driven to pursue
	advanced research when they pursue further education.
PO6	Attain the capacity to choose diverse career paths, including roles in the
	judiciary, education, research, social work, journalism, etc., based on
	philosophical foundations.

3. CLASS TIME TABLE (Latest)

Days	8.30-9.30am	9.30-10.30am	10.30-	11.30am-	12.30-1.30pm	1.30-2.30pm	2.30-3.30pm	3.30-4.30pm	4.30-
			11.30am	12.30pm					5.30pm
Monday		D1S(H)	HS 2 nd	D1S(H)		D3S(H)	D1S(G/R)		
		D3S(G/R)	D3S(H)	SEC (3 rd)	D3S(H)	DSC-1			
		D5S(H)	D5S(H)		DSC-2	D5S(RE)	D5S(R/G)		
Tuesday		D1S(H)	D3S(H)	D1S(H)		HS 2 nd		HS 1 st	D1S(G/R)
			D5S(H)	SEC (3 rd)	D3S(H)	D3S(H)	D3S(G/R)		
		D5S(H)	D5S(RE)		DSC-2	DSC-1	D5S(R/G)		
Wednesday	D1S(G/R)	D1S(H)		HS 1 st		HS 2 nd			
		D5S(H)	D3S(H)	D1S(H)	D3S(H)	D3S(H)		D3S(G/R)	SEC (3rd)
		D5S(RE)	DSC-1	SEC (5 th)	DSC-2	D5S(H)	D5S(R/G)		
Thursday		D1S(H)		D1S(H)	HS 1 st	D1S(G/R)	HS 2 nd		
	D3S(G/R)		D3S(H)		D3S(H)	D3S(H)			SEC (3 rd)
		D5S(H)	DSC-1	SEC (5 th)	DSC-2	D5S(H)	D5 S(R /G)	D5S(RE)	
Friday		HS 1 st		D1S(H)	D1S(H)	D1S(G/R)			
		D3S(H)	D3S(H)	D3S(G/R)		D3S(H)			
		D5S(H)	DSC-1	D5S(H)	D5S(R/G)	DSC-2	D5S(RE)	SEC (5 th)	
Saturday		HS 2 nd	D3S(H)	D1S(H)	D1S(H)	HS 1 st	D1S(G/R)		
		D3S(H)	D5S(RE)		D3S(G/R)	D3S(H)			
		D5S(H)	DSC-1	D5S(H)	D5S(R/G)	DSC-2		SEC (5 th)	

a. CLASS ROUTINE FOR BA ODD SEMESTERS, 2022

Abbreviations: SEC-Skill Enhancement Course, DIS (H)- BA1st Sem (Honours), D3S (H)- BA3rd Sem (Honours), D5S (H)- BA5th Sem (Honours), D1S (G/R)- BA1st Sem (Generic Regular), D3S (G/R)- BA3rd Sem (Generic Regular), D5S (R/G)- BA5th Sem (Generic Regular), D5S (RE)- BA5th Sem (Regular Elective)

Days	8.30-9.30am	9.30-10.30am	10.30- 11.30am	11.30am- 12.30pm	12.30-1.30pm	1.30-2.30pm	2.30-3.30pm	3.30-4.30pm	4.30- 5.30pm
Monday		D2S(H)	HS 2 nd	D2S(H)		D4S(H)	D2S(G/R)		
		D4S(G/R)	D4S(H)	SEC (4 th)	D4S(H)	DSC-1			
		D6S(H)	D6S(H)		DSC-2	D6S(RE)	D6S(R/G)		
Tuesday		D2S(H)	D4S(H)	D2S(H)		HS 2 nd		HS 1 st	D2S(G/R)
			D6S(H)	SEC (4 th)	D4S(H)	D4S(H)	D4S(G/R)		
		D6S(H)	D6S(RE)		DSC-2	DSC-1	D6S(R/G)		
Wednesday	D1S(G/R)	D2S(H)		HS 1 st		HS 2 nd			
		D6S(H)	D4S(H)	D2S(H)	D4S(H)	D4S(H)		D4S(G/R)	SEC (4 th)
		D6S(RE)	DSC-1	SEC (6 th)	DSC-2	D6S(H)	D6S(R/G)		
Thursday		D2S(H)		D2S(H)	HS 1 st	D2S(G/R)	HS 2 nd		
	D3S(G/R)		D4S(H)		D4S(H)	D4S(H)			SEC (4 th)
		D6S(H)	DSC-1	SEC (6 th)	DSC-2	D6S(H)	D6S(R/G)	D6S(RE)	
Friday		HS 1 st		D2S(H)	D2S(H)	D2S(G/R)			
		D4S(H)	D4S(H)	D4S(G/R)		D4S(H)			
		D6S(H)	DSC-1	D6S(H)	D6S(R/G)	DSC-2	D6S(RE)	SEC (6 th)	
Saturday		HS 2 nd	D4S(H)	D2S(H)	D2S(H)	HS 1 st	D2S(G/R)		
		D4S(H)	D6S(RE)		D4S(G/R)	D4S(H)			
		D6S(H)	DSC-1	D6S(H)	D6S(R/G)	DSC-2		SEC (6 th)	

a. CLASS ROUTINE FOR BA EVEN SEMESTERS, 2023

Abbreviations: SEC-Skill Enhancement Course, DIS (H)- BA1st Sem (Honours), D3S (H)- BA3rd Sem (Honours), D5S (H)- BA5th Sem (Honours), D1S (G/R)- BA1st Sem (Generic Regular), D3S (G/R)- BA3rd Sem (Generic Regular), D5S (R/G)- BA5th Sem (Generic Regular), D5S (RE)- BA5th Sem (Regular Elective)

4. ACADEMIC CALENDAR (2022-2023)

Departmental Academic Calendar, May 2021 - March 2022

Department of Philosophy

Month	Date(s)	Action Plan	Remarks
May 2021	4 th Week of May	Commencement of UG Classes of	Due to COVID-19
June	June – July	Even Semester in Online Mode	Pandemic
Aug	2 nd Week of Aug	Conduct of Final Examination of	
	2021	Even Semester in Online Mode	
Sep	6 Sep 2021	Commencement of UG Classes of	
		Odd Semester	
Nov	18 Nov 2021	World Philosophy Day	
		Celebration	
Dec	11 Dec to 17 Dec	Sessional Examination	Conduct by College
	2021		Authority
	21 Dec to 24 Dec	Sessional Examination	Conduct by Department
	2021		
Jan 2022	11/12 Jan	Election & Counting	College Election
Feb	26 Feb	Conduct of Final Examination of	
		Odd Semester	
March	15 March	HS Final Examination	

Nalbari College

Departmental Academic Calendar, April 2022 – June 2023

Department of Philosophy

Nalbari College

Month	Date(s)	Action Plan	Remarks
April	3 rd Week of April,	Commencement of UG Classes of	
	2022	Even Semester	
May	23 May – 28 May	College Week	
	2022		
June	8 June – 14 June	Sessional Examination	Conduct by College
	2022		Authority
	28 June – 30 June 2022	Sessional Examination	Conduct by Department
July	1 July 2022	Farewell	BA 6 th Sem (2019 –
			2022 Batch)
	7 July	Conduct of Final Examination of	
		6 th Semester	
	15 July 2022	Meeting for 4 th Sem SEC Project	

	20 July – 7 Aug 2022	Summer Vacation	
Aug	8 Aug 2022	Commencement of UG Classes of 1 st Semester & HS 1 st and 2 nd Year	
	13 Aug 2022	Conduct of Final Examination of 4 th and 2 nd Semester	
Sep	16 Sep 2022	Commencement of UG Classes of 5 th and 3 rd Semester	
	22 Sep 2022	Farewell (Dr. Malaya Borah)	
Oct	19 Oct – 20 Oct	Sessional Examination of 1 st and 3 rd Sem	Conduct by Department
Nov	11 Nov and 12 Nov 2022	Election and counting	College Election
	15 Nov – 17 Nov 2022	Sessional Examination of 5 th Sem	Conduct by Department
	22 Nov 2022	Conduct of Final Examination of Odd Semester	
Dec	1 Dec – 14 Dec 2022	Preparatory Examination of HS 2 nd Year	
	24 Dec 2022 – 16 Jan 2023	Winter Vacation	
Jan 2023	17 Jan 23	Commencement of UG Classes of Even Semester	
Feb	8 Feb - 14 Feb 23	College Week	
	20 Feb 23	HS Final Examination	
March	16 March 23	Sessional Examination	Conduct by Department
April	12 April 23	Interview (for Sanctioned Post)	
1	19 April – 26 April 23	Sessional Examination	Conduct by College Authority
	29 April 23	Farewell	BA 6 th Sem (2020 – 23 Batch)
May	3 May 23	Academic Lecture on "Moral Status: Obligation to persons and other living things"	Delivered by Dr. Tapan Talukdar, Assistant Prof., KVBS University
	6 May- 9 June 23	Conduct of Final Examination of Even Semester	
June	1 June	Joined two Sanction Post in our department	 Sony Das Simi Borgohain

Course File (for 1st Semester)

1. PROGRAMME SPECIFIC OUTCOMES (PSOs):

After successfully completing B. A. in Philosophy (Honours/Major/Minor/Regular/Skill) the following PSO are expected of the students:

PSO1	Develop a comprehensive understanding of the fundamental concept in philosophy, spanning areas such as Metaphysics, Epistemology, Axiology etc.
PSO2	Become acquainted with major figures and developments in the history of
	philosophy, gaining insight into the evolution of philosophical thought.
PSO3	Enhancing logical reasoning skills.
PSO6	Students acquire knowledge and skills to defend personal views and engage
	in challenging philosophical problems, fostering resilience and critical
	thinking.
PSO7	Acquiring knowledge to construct valid arguments, as well as developing the
	aptitude and ability to establish their own.
PSO10	Increase critical understanding and thinking in Indian Logic
PSO12	Explore analytic trends in Western philosophy, enhancing critical analysis and
	embracing linguistic approaches to philosophical problems.

2. COURSE LEARNING OUTCOMES (CLOs) AND COURSE OBJECTIVES (COs)

Semester	Course Title (Course Code)	Course Learning Outcomes (CLOs)	Course Objectives (Cos)
I (CBCS)	Indian Philosophy- I (PHI-HC-1016)	 At the completion of the course, a student is expected to be able to articulate the distinct areas of thoughts of ancient India. Students become aware of the metaphysics and epistemology of various schools which help them to understand the society at large. 	 The course introduces the students to thoughts which were available in ancient India. The course introduces the ideas and concepts which helped Heterodox systems of Indian Philosophy to develop.

I (CBCS)	Logic- I (PHI-HC- 1026)	 On the completion of the course students will be able to distinguish valid and invalid deductive arguments. The students will be able to identify the basic logical structure of arguments in ordinary language by translating them into proper logical form. The students will be able to construct valid syllogism, and they will learn about syllogism in ordinary language.
I (CBCS)	General Philosophy (PHI-HG/RC-1016)	 The course will enable students to understand various philosophical concepts like substance, causality, space, and time, etc. Students will become familiar with certain ways of putting arguments about the concepts. Students will also learn the different approaches taken up by rationalism, empiricism and critical thinkers in understanding the concepts. The course will introduce the students to the history of Modern Western Philosophy. Philosophers like Descartes, Spinoza, Leibniz, Locke, Berkeley, Hume, as well as the German Idealists like Kant and Hegel will be studied. The questions that concern these philosophers and their intensive argument will be read.

1. **i.**

a. Syllabus Semester: I Course Name: INDIAN PHILOSOPHY I Course Code: PHI-HC-1016

Unit I

Development of Indian Philosophy: the Vedas, the Upanisads, Bhagavadgita Meaning and scope of Indian Philosophy

Schools of Indian Philosophy; the Common Characteristics of Indian Systems

Unit II

Carvaka Materialism: Epistemology (Denial of Inference and Testimony); Metaphysics Four elements; denial of soul; denial of God; Ethics Jainism: Anekäntavāda; Syadvada; Saptabhangi Naya Jainism: Navatattva

Unit III

Buddhism: Four Noble Truths; Suffering; Cause of Suffering and Chain of Twelve Links; Cessation of Suffering and Nirvana; Way of Cessation of Suffering and Astangika Marga Buddhism: Theory of Dependent Origination Buddhism: Theory of Impermanence; Theory of No-soul

Unit IV

Abhidharma Schools: Vaibhäşika (bähya-pratyaksa-vāda); Sautrānika (bahyānumeya-vāda) Madhyamaka: Sunyavāda

Yogacāra: Vijñānavāda

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

b. Teaching Method for Each Unit of The Syllabus

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Viva
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

ii.

a. Syllabus

Semester: I Course Name: LOGIC - I Course Code: PHI-HC-1026

Unit I

Argument and Argument Form Truth and Validity Deduction and Induction

Unit II

Categorical Propositions; Translating Ordinary Proposition into Standard Form; Square of Opposition. Categorical Syllogism; Figures and Moods Immediate Inference

Unit III

Venn Diagrammatic Representation of Propositions and Arguments Idea of Existential Import Testing Validity by Venn Diagram

Unit IV

Concept of Set Operations of Set- Union, Intersection and Difference Symbolization of Sentences by Set Notations

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Assignment
II	Sessional Test
III	Sessional Test
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

iii.

a. Syllabus

Semester: I Course Name: GENERAL PHILOSOPHY Course Code: PHI-HG/RC-1016

Unit I

Definition, Nature and Scope of Philosophy Branches of Philosophy Realism and Idealism

Unit II

Substance

Causality

Space and Time

Unit III

Empiricism, Rationalism Criticism Scepticism

Unit IV

Correspondence Coherence Pragmatic and Semantic

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

Course File (for 2nd Semester)

1. PROGRAMME SPECIFIC OUTCOMES (PSOs):

After successfully completing B. A. in Philosophy (Honours/Major/Minor/Regular/Skill) the following PSO are expected of the students:

PSO1	Develop a comprehensive understanding of the fundamental concept in philosophy, spanning areas such as Metaphysics, Epistemology, Axiology etc.	
PSO2	Become acquainted with major figures and developments in the history of	
	philosophy, gaining insight into the evolution of philosophical thought.	
PSO3	Enhancing logical reasoning skills.	
PSO6	Students acquire knowledge and skills to defend personal views and engage	
	in challenging philosophical problems, fostering resilience and critical	
	thinking.	
PSO7	Acquiring knowledge to construct valid arguments, as well as developing the	
	aptitude and ability to establish their own.	
PSO10	Increase critical understanding and thinking in Indian Logic	
PSO12	Explore analytic trends in Western philosophy, enhancing critical analysis and	
	embracing linguistic approaches to philosophical problems.	

2. COURSE LEARNING OUTCOMES (CLOs) AND COURSE OBJECTIVES (COs)

Semester	Course Title (Course Code)	Course Learning Outcomes (CLOs)	Course Objectives (Cos)
II (CBCS)	Greek Philosophy (PHI-HC-2016)	 It will give the students a comprehensive understanding of early Greek Philosophy. The student will learn about the questions concerning virtue, justice, theory of forms, and causality. The student will learn about the different philosophical theories about the composition of the stuff that makes up the world. 	Socrates, Plato and

II(CBCS)	Logic II (PHI-HC-2026)	 On the completion of the course, students will be able to break down an argument and analyze the truth conditions of its component parts. The students will be able to symbolize everyday language. The students will be able to construct formal proof of validity. 		The course introduces students to the basics of symbolic logic (modern deductive logic) The course introduces tools for symbolizing everyday language and arguments using symbolic notation. The course is designed to introduce the students the formal principles and techniques of modern symbolic logic for distinguishing valid arguments from the invalid arguments.
	Indian Philosophy (PHI-HG/RC-2016)	1. Understanding Indian philosophical thought through the basic knowledge of orthodox and heterodox trends of Indian Philosophy.	1.	The objective of this course is to acquaint the students with basic issues and problems of philosophy as discussed in Indian tradition.

1. **i.**

a. Syllabus

Semester: II Course Name: Greek Philosophy Course Code: PHI-HC-2016

Unit I: Thales, Anaximander, Anaximenes Pythagoras, Heraclitus, Democritus and Parmenides

Unit II: Protagoras Socrates' method Socrates' virtue

Unit III: Plato Knowledge and Opinion Theory of Forms Justice Unit IV: Aristotle Form and Matter Causation Actuality and Potentiality

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

ii.

a. Syllabus

Semester: II Course Name: Logic - II Course Code: PHI-HC-2016

Unit I

Symbolic Logic and its Characteristics, Uses of Symbols Relation between Traditional Logic and Symbolic Logic Modern Classification of Propositions

Unit II

Logical Connectives and Variables Symbolization of Sentences Symbolization of Arguments

Unit III

Truth Tables for Logical Connectives Direct Truth-Table for testing validity of arguments Indirect Truth-Table for testing validity of arguments

Unit IV

Formal Proof of Validity Rules of Inference Rules of Replacement

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method	
Ι	Assignment	
II	Sessional Test	
III	Sessional Test	
IV	Assignment	

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

iii.

a. Syllabus

Semester: II Course Name: INDIAN PHILOSOPHY Course Code: PHI-HG-2016

Unit I

Development of Indian Philosophy, Meaning and scope of Indian Philosophy Schools of Indian Philosophy Common Characteristic of Indian Systems

Unit II

Buddhism: Four Noble Truths Buddhism: Theory of Impermanence; No-soul theary Jainism: Syädväda, Anekäntavāda

Unit III

Sämkhya: Purusha; Nature Samkhya: Evolution Subject: Pramānas

Unit IV

Sankara: Brahman Šańkara: Avidya & Adhyāsa Ramanuja: Brahman; Jiva and Prakriti

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

d. Lecture notes (Handwritten/typed) : Handwritten

- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly.

COURSE FILE (For 3rd Semester)

1. PROGRAMME SPECIFIC OUTCOMES (PSOs):

After successfully completing B. A. in Philosophy (Honours/Major/Minor/Regular/Skill) the following PSO are expected of the students:

PSO1	Develop a comprehensive understanding of the fundamental concept in philosophy, spanning areas such as Metaphysics, Epistemology, Axiology etc.
PSO2	Become acquainted with major figures and developments in the history of philosophy, gaining insight into the evolution of philosophical thought.
PSO5	Recognize diverse values and moral dimensions, increasing the ability to make responsible decisions and understand the ethical implications of one's choices.
PSO9	Recognize personal value systems and apply them to navigate and contribute to one's social environment.

2. COURSE LEARNING OUTCOMES (CLOs) AND COURSE OBJECTIVES (COs)

Semester	Course Title (Course Code)	Course Learning Outcomes (CLOs)	Course Objectives (Cos)
III (CBCS)	Western Philosophy (Descartes to Hegel) (PHI-HC-3016)	 It enables the students to know about thinking of the western philosophers and their system buildings. Students will be introduced to the traditional western philosophical tradition i.e. Empiricism, Rationalism etc. 	 To provide students with a comprehensive understanding of the various theories of western philosophy beginning with Descartes. This paper attempts to introduce students with the problem of modern western philosophy and to develop systematic and critical understanding.
	Indian Philosophy II (PHI-HC-3026)	 Students is expected to be able to name the Orthodox systems of Indian philosophy. Students is expected to be able to state the basic concepts and theories that are specific to a system. 	 The course introduces the students to Orthodox systems of philosophy which developed in India. The course introduces the students to the basic ideas and thoughts of each specific system.
	Ethics (PHI-HC-3036)	 The course will develop analytic and critical thinking regarding ethical dilemmas. The course will enhance the ability to apply ethical 	1. The course attempts to introduce students to the fundamental questions of moral philosophy, with attention to both

	 principles in decision making. 3. Students will be able to see how moral principles are involved in different concrete situations. 	 classic and contemporary readings. What determines the right action from wrong, and how to act morally? How do we decide what morality demands of us in some situation? etc. 2. The course also addresses some issues of current moral debate.
Ethics (PHI-HG/RC-3016)	 The course will develop analytic and critical thinking regarding ethical dilemmas. The course will enhance the ability to apply ethical principles in decision making. Students will be able to see how moral principles are involved in different concrete situations. 	 The course attempts to introduce students to the fundamental questions of moral philosophy, with attention to both classic and contemporary readings. What determines the right action from wrong, and how to act morally? How do we decide what morality demands of us in some situation? etc. The course also addresses some issues of current moral debate.

3. i.

a. Syllabus

Semester: III (CBCS) Course Name: WESTERN PHILOSOPHY (Descartes to Hegel) Course Code: PHI-HC-3016

Unit I: Rationalism

Descartes: Cartesian Method, mind-body dualism Spinoza: God and Substance Leibnitz: Theory of monads, pre-established harmony

Unit II: Empiricism

Locke: critique of innate ideas, substance and qualities Berkeley: esse est percipi Hume: Impression and ideas, concept of self

Unit III: Kant

Possibility of synthetic a priori judgement Space and time Categories

Unit IV: Hegel Dialectic Method Absolute Idealisms Master-slaves dialectic

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- **f.** Result analysis: to be done
- **g.** Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

ii.

a. Syllabus

Semester: III (CBCS) Course Name: INDIAN PHILOSOPHY II Course Code: PHI-HC-3026

Unit I

Sāmkhya: Purusa; Prakrti; Causation

Yoga: Cittavrtti and its Nirodha; Astangika Mārga

Unit II

Nyāya: Pramānas Vaišesika: Padārthas; Atomistic theory of Creation

Unit III

Mimāmsa: Pramānas

Mimāmsa: Pramānyavāda; Khyātivāda

Uniit IV

Śaṅkara: Brahman; Atman; Adhyāsa and Avidyā Rāmanuja; Brahman; Jiva and Jagat; Apṛthaksiddhi Sankardeva's concept of God and Bhakti

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- **f.** Result analysis: to be done
- **g.** Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

iii.

a. Syllabus

Semester: **III (CBCS)** Course Name: **ETHICS** Course Code: **PHI-HC-3036**

Unit I

Nature, Scope and Utility of study of Ethics Object of Moral Judgement, Moral Obligation Postulates of Morality

Unit II

Virtue Ethics: Aristotle Deontological Ethics: Kant Utilitarianism: Bentham, Mill

Unit III

Theories of Punishment Professional Ethics Environmental Ethics

Unit IV

Law of Karma, Varṇa and Aśrama Dharma, Puruṣārtha Buddhist Pañcaśīla; Brahmavihāra Jaina Triratna, Aṇuvrata and Mahāvrata

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Viva-voce
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

iv.

a. Syllabus

Semester: III (CBCS) Course Name: ETHICS Course Code: PHI-HG/RC-3016

Unit I

Nature, Scope and Utility of study of Ethics Object of Moral Judgement, Moral Obligation Postulates of Morality

Unit II

Virtue Ethics: Aristotle Deontological Ethics: Kant Utilitarianism: Bentham, Mill

Unit III

Theories of Punishment Professional Ethics Environmental Ethics

Unit IV

Law of Karma, Varṇa and Aśrama Dharma, Puruṣārtha Buddhist Pañcaśīla; Brahmavihāra Jaina Triratna, Aṇuvrata and Mahāvrata

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

Course File (for 4th Semester)

1. PROGRAMME SPECIFIC OUTCOMES (PSOs):

After successfully completing B. A. in Philosophy (Honours/Major/Minor/Regular/Skill) the following PSO are expected of the students:

PSO3	Enhancing logical reasoning skills.
PSO4	Determine how philosophy relates to other fields, such as literature, the
	social sciences, and the natural sciences.
PSO6	Students acquire knowledge and skills to defend personal views and engage
	in challenging philosophical problems, fostering resilience and critical
	thinking.
PSO7	Acquiring knowledge to construct valid arguments, as well as developing
	the aptitude and ability to establish their own.
PSO8	To learn contemporary techniques and accepted answers to philosophical
	questions, staying informed about the latest advancements in the field.
PSO9	Recognize personal value systems and apply them to navigate and contribute
	to one's social environment.
PSO11	Acquaint with major world religions, fostering religious tolerance and
	interfaith understanding.

2. COURSE LEARNING OUTCOMES (CLOs) AND COURSE OBJECTIVES (COs)

Semester	Course Title (Course Code)	Course Learning Outcomes (CLOs)	Course Objectives (Cos)
IV(CBCS)	Contemporary Indian Philosophy (PHI-HC-4016)	 The course is expected to make the students learn how to compare the contemporary approach to philosophy with the traditional one. The course is expected to make the students explain as well as analyze the concepts as found in the philosopher. The course is expected to make the students revise their philosophical outlook in the light of contemporary Indian philosophy. 	 The course is introduced to make the students familiar with the contemporary approach to philosophy. The course is introduced to acquaint the students with the philosophical ideas of contemporary Indian philosophers like Aurobindo, Gandhi, Vivekananda, Radhakrishnan.
IV(CBCS)	Philosophy of Religion (PHI-HC-4026)	1. The course is expected to enable the students to provide philosophical justification of the important religious concepts like proofs for the existence of God, relation between God and the world, faith and reason, etc.	 The course is introduced to acquaint the students with the meaning, nature and scope of philosophy of Religion. The course is introduced to make the students familiar with basic religious concepts along

	Political & Social Philosophy (PHI-HC-4036)	 The course is expected to enable the students to justify the issues of immortality of the soul, freedom of the will, miracle, incarnation, etc. The course is expected to provide the students with proper understanding and clarification of the concepts. The course is expected to make the students describe as well as analyse the social and political concepts. Students will be able to express thoughts on some major philosophical questions in the area of social and political philosophy with respect to the intellectual and historical developments of the questions. 	 with its philosophical significance. 3. To developed in the students a critical and philosophical outlook towards various faith and dogmas. 1. To explore different theories and concepts regarding society and politics. 2. It aims at studying different ranges of social and political thinkers, theories and concepts.
· · · ·	Logic (PHI-HG/RC-4016)	 On the completion of the course students will be able to distinguish valid and invalid deductive arguments. The students will be able to identify the basic logical structure of arguments in ordinary language by translating them into proper logical form. The students will be able to construct valid syllogisms, and they will learn about syllogisms in ordinary language. 	 The course introduces students to the basics of symbolic logic (modern deductive logic) The course introduces tools for symbolizing everyday language and arguments using symbolic notation. The course is designed to introduce the students the formal principles and techniques of modern symbolic logic for distinguishing valid arguments from the invalid arguments.

1. **i.**

a. Syllabus

Semester: IV Course Name: CONTEMPORARY INDIAN PHILOSOPHY Course Code: PHI-HC-4016

Unit I: Aurobindo

Evolution Super mind Synthesis of yoga

Unit II: Radhakrishnan

Religious experience Intellect and intuition Man and his destiny

Unit III: Gandhi

Religion, Truth, Non-violence Satyagraha, Sarvodaya, Swadeshi Critique of industrialisation, trusteeship

Unit IV: Vivekananda

Universal religion Practical Vedanta Philosophy of education

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Viva

IV	Assignment	
----	------------	--

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

ii.

a. Syllabus

Semester: IV Course Name: PHILOSOPHY OF RELIGION Course Code: PHI-HC-4026

Unit I

Nature of Philosophy of religion and its distinction from theology Religious experience Religion and Science

Unit II

Ontological argument Cosmological argument; Teleological argument Moral argument

Unit III

Reason, Faith and Revelation Freedom of Will Immortality of the soul

Unit IV

Religious language and symbolism Anti religious theories-Materialism and logical positivism Religious Philosophy of Sankaradeva

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method

IV Lecture – Discussion Method	
--------------------------------	--

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Seminar
II	Sessional Test
III	Sessional Test
IV	Seminar

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

iii.

a. Syllabus

Semester: IV Course Name: POLITICAL & SOCIAL PHILOSOPHY Course Code: PHI-HC-4036

Unit I

Rights and Duties Hatice Equality & Liberty

Unit II

Anarchism Socialism

Marxism

Unit III

Monarchy

Theocracy

Democracy

Unit IV Humanism Secularixm Multiculturalism

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

iv.

a. Syllabus

Semester: IV Course Name: Logic Course Code: PHI-HG/RC-5026

UNIT I: Fundamental Concepts of logic Propositions and Arguments

Truth and Validity

Deduction and Induction

UNIT II: Aristotelian Syllogistic Logic

Categorical Propositions, Translating Ordinary Proposition into Standard Form Square of Opposition Categorical Syllogism, Figures and Moods Immediate Inference

UNIT III: Symbolic Logic: Introduction Symbolic Logic and its Characteristics, Uses of Symbols Relation between Traditional Logic and Symbolic Logic Modern Classification of Propositions

UNIT IV: Propositional Logic Logical Connectives: and, or, not; Material Conditional, Bi-conditional Symbolization of everyday language Truth-Table method of testing validity of argument, Shorter Truth Table

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly.

Course File (for 5th Semester)

1. PROGRAMME SPECIFIC OUTCOMES (PSOs):

After successfully completing B. A. in Philosophy (Honours/Major/Minor/Regular/Skill) the following PSO are expected of the students:

PSO1	Become acquainted with major figures and developments in the history of philosophy, gaining insight into the evolution of philosophical thought.
PSO2	Students acquire knowledge and skills to defend personal views and engage in challenging philosophical problems, fostering resilience and critical thinking.
PSO3	To learn contemporary techniques and accepted answers to philosophical questions, staying informed about the latest advancements in the field.
PSO4	Acquaint with major concept of Upanishad and Gita and its understanding.
PSO5	Explore analytic trends in Western philosophy, enhancing critical analysis and embracing linguistic approaches to philosophical problems.
PSO6	Students engage with the growing field of feminism, developing an understanding of women's rights and promoting equality of sexes.

2. COURSE LEARNING OUTCOMES (CLOs) AND COURSE OBJECTIVES (COs)

Semester	Course Title (Course	Course Learning Outcomes (CLOs)	Course Objectives (Cos)
V (CBCS)	Code) Analytic Philosophy (PHI-HC-5016)	 The students will be able to understand the features of analytic philosophy, and will be able to distinguish between classical philosophy and analytic philosophy. The students will be understand the importance of language in dissecting philosophical issues. The students will be able to inculcate critical and reflective thinking. 	 The course is designed to get the students acquainted with one of the most influential schools of Contemporary Western Philosophy. The course introduces to the students' analytic philosophers like G. E. Moore, Bertrand Russell, Early Wittgenstein and Later Wittgenstein.
V (CBCS)	Phenomenology and Existentialism (PHI-HC-5026)	 The learning objective of the course is to enable students to understand the meaning of life that is not superficial. The learning objective is to make the students come face-to-face with real life-problems and also various ways to improve and work on their will to live life well. 	 The objective of the course is to introduce students to various thinkers like Kierkegaard, Heidegger, Husserl, Sartre. The objective of the course is to make them families with the existential and

Philosophy of Upanisads (PHI-HE-5016)	 The students will be able to understand the Upanisadic interpretations about the general social conditions, Ultimate reality and individual. 	 phenomenological issues that all humans face in their everyday lives. 1. This paper attempts to acquaint the students with Vedic and Upanisadic Philosophy.
Philosophy of Gita (PHI-HE-5026)	 The students will be able to understand the basic ideas and theories of the Gita. The students will be able to apply ethical principles derived from the Gita to real- life scenarios. 	 The objective of the course is to introduced students to various concept and theories of the Gita like Law of Karma, Conception of Yoga, Dharma, and the nature of reality etc. To explore the ethical implications of Gita's teachings on personal conduct, morality and the pursuit of a righteous life.
Contemporary Indian Philosophy (PHI-RE-5016)	 The course is expected to make the students learn how to compare the contemporary approach to philosophy with the traditional one. The course is expected to make the students explain as well as analyze the concepts as found in the philosopher. The course is expected to make the students revise their philosophical outlook in the light of contemporary Indian philosophy. 	 The course is introduced to make the students familiar with the contemporary approach to philosophy. The course is introduced to acquaint the students with the philosophical ideas of contemporary Indian philosophers like Aurobindo, Gandhi, Vivekananda, Radhakrishnan.
Indian Yogic Tradition (PHI-GE-5016)	 The students will be able to gain a comprehensive knowledge of the diverse paths within the yogic tradition and respective philosophical underpinnings. Students will be able to acquire practical skills for 	 To introduce basics of Yoga and understand Jnana, Karma and Bhakti yoga. To explore mental levels of yoga and eight-fold path. Learn about Yoga in Buddhism and Jainism.

personal growth by applying concepts like the eightfold path to improved mental and	4. To introduce Indian thinkers like Vivekananda,
spiritual well-being.	Aurobindo's contribution to yoga.

3. i.

a. Syllabus Semester: V Course Name: Analytic Philosophy Course Code: PHI-HC-5016

Unit I:

Moore: The Analytic Turn of Philosophy Moore: Refutation of Idealism Moore: Defence of Common Sense

Unit II:

Russell: Logical Atomism Russell: General Propositions and Existence Russell: Theory of Description

Unit III:

Wittgenstein: The World as a Totality of Facts Wittgenstein: Picture Theory of Meaning Vienna Circle: Verification Theory and Rejection of Metaphysics

Unit IV:

Wittgenstein: Meaning and Use Wittgenstein: Language Game Wittgenstein: Critique of Private Language

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Viva
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

ii.

a. Syllabus

Semester: V Course Name: Phenomenology and Existentialism Course Code: PHI-HC-5016

Unit I: Kierkegaard

The three stages of human existence Subjectivity and Truth

Unit II: Sartre

Existence and Essence Freedom and Choice

Unit III: Heidegger Authentic existence

Being-in-the-world and Temporality

Unit IV: Husserl

Theory of essence Intentionality and Bracketing

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Seminar
II	Sessional Test
III	Sessional Test
IV	Seminar

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

iii.

a. Syllabus

Semester: IV Course Name: Philosophy of Upanishad Course Code: PHI-HE-5016

Unit I

Relation to Vedas General Social Conditions Outlines of Upanisadic Philosophy

Unit II

Diversity of Theories in Creation Acosmic Theory of Creation Cosmic Theory of Creation

Unit III

Brahman, the Absolute Brahman, the World-Ground Brahman as Cosmic and Acosmic Ideal

Unit IV Individual Destiny:

Individual Soul Karma and Saṃsāra Liberation

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

iv.

a. Syllabus

Semester: V Course Name: Philosophy of Gita Course Code: PHI-HE-5026

Unit I:

Law of Karma Concept of Karma, Akarma, Vikarma Freedom and Choice

Unit II:

Ksetra-Ksetrajña, purusa-prakrti Uttama Purusa and Ultimate Reality Relation of individual self and Ultimate Reality

Unit III:

Conception of Yoga Karma Yoga, Jñāna Yoga, Bhakti Yoga Reconciliation of the Yogas **Unit IV:** Svabhāva, Svakarma, Svadharma Nişkamakarmayoga; Lokasamgraha Liberation

UnitTeaching MethodILecture – Discussion MethodIILecture – Discussion MethodIIILecture – Discussion MethodIVLecture – Discussion Method

b. Teaching Method for Each Unit of The Syllabus

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Viva
IV	Viva

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

V.

a. Syllabus

Semester: V Course Name: Contemporary Indian Philosophy Course Code: PHI-RE-5016

Unit I: Aurobindo

Evolution Super mind Synthesis of yoga

Unit II: Radhakrishnan

Religious experience Intellect and intuition Man and his destiny

Unit III: Gandhi

Religion, Truth, Non-violence Satyagraha, Sarvodaya, Swadeshi Critique of industrialisation, trusteeship

Unit IV: Vivekananda

Universal religion Practical Vedanta Philosophy of education

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

vi.

a. Syllabus

Semester: V Course Name: Indian Yogic Tradition Course Code: PHI-GE-5016

Unit I Meaning and Essence of Yoga Jnana Yoga, Karma Yoga, Bhakti Yoga

Unit II Levels of Mental Life (Cittabhumi) Eightfold Means of Yoga (Yoganga) **Unit III** Buddhist Conception of Yoga Jaina Conception of Yoga

Unit IV Swami Vivekananda on Raja Yoga Sri Aurobindo's Integral Yoga

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

Course File (for 6th Semester)

1. PROGRAMME SPECIFIC OUTCOMES (PSOs):

After successfully completing B. A. in Philosophy (Honours/Major/Minor/Regular/Skill) the following PSO are expected of the students:

PSO1	Develop a comprehensive understanding of the fundamental concept in
1201	philosophy, spanning areas such as Metaphysics, Epistemology, Axiology etc.
PSO4	Determine how philosophy relates to other fields, such as literature, the social sciences, and the natural sciences.
PSO5	Recognize diverse values and moral dimensions, increasing the ability to make responsible decisions and understand the ethical implications of one's choices.
PSO8	To learn contemporary techniques and accepted answers to philosophical questions, staying informed about the latest advancements in the field.
PSO9	Recognize personal value systems and apply them to navigate and contribute to one's social environment.
PSO11	Acquaint with major world religions, fostering religious tolerance and interfaith understanding.
PSO12	Explore analytic trends in Western philosophy, enhancing critical analysis and embracing linguistic approaches to philosophical problems.
PSO14	Gain understanding in applied ethics, addressing issues such as the value of human life, environmental ethics, and professional ethics, while navigating modern ethical challenges in areas like medical ethics, euthanasia, abortion, doctor-patient relations, media ethics, privacy, and ethical issues in cyberspace.

2. COURSE LEARNING OUTCOMES (CLOs) AND COURSE OBJECTIVES (COs)

Semester	Course Title (Course	Course Learning Outcomes Course Objectives (Cos)
	Code)	(CLOs)
VI (CBCS)	Philosophy of Mind (PHI-HC-6016)	 The students will be able to think critically about human mind. The students will be able to acquired the knowledge of mind-body problems and theories. The students will be able to acquired the knowledge of mind.
VI (CBCS)	Meta Ethics (PHI-HC-6026)	 The course is expected to enable the students to understand about the ethical properties, statements, attitudes, and judgements. To introduce students to normative ethics, Meta ethics, ethical concepts and evaluation. The objective of the course is to students to various thinkers like GE Moore, AJ Ayer, CL Stevenson, RM Hare.

VI (CBCS)	Philosophy of Language (PHI-HE-6026)	 Students will be able to make the basis difference between philosophical study of Language and scientific study of Language. Students will be able to appreciate the different approaches to meaning. They will be able to appreciate the different acts that are performed by different utterances. 	 Introduce the students with the philosophical study of Language as distinct from linguistics, concepts of meanings related to various theories of truth. Distinction between constative and performative utterances and the different acts that are performed while making different utterances.
VI (CBCS)	Applied Ethics (PHI-HE-6036)	 Students will be able to acquaint themselves with basic concepts of applied ethics. Students will be able to understand problematic moral situations in practical lives and to reflect on their solutions from an ethical perspective. 	 To introduce basic concept of applied ethics concerning value of life, environmental ethics and professional ethics. To introduce the moral considerations in our practical world. medical ethics, media ethics etc. To introduce the modern ethical issues such as medical ethics, media ethics etc.
VI (CBCS)	Philosophy of Religion (PHI-RE/GE-6016)	 The course is expected to enable the students to provide philosophical justification of the important religious concepts like proofs for the existence of God, relation between God and the world, faith and reason, etc. The course is expected to enable the students to justify the issues of immortality of the soul, freedom of the will, miracle, incarnation, etc. 	 The course is introduced to acquaint the students with the meaning, nature and scope of philosophy of Religion. The course is introduced to make the students familiar with basic religious concepts along with its philosophical significance. To developed in the students a critical and philosophical outlook towards various faith and dogmas.

VI (CBCS)	Political & Social Philosophy (PHI-RE-6026)	1. The course is expected to make the students describe as well as analyse the social and political concepts.	1. To explore different theories and concepts regarding society and politics.
		 Students will be able to express thoughts on some major philosophical questions in the area of social and political philosophy with respect to the intellectual and historical developments of the questions. 	 It aims at studying different ranges of social and political thinkers, theories and concepts.

1. **i.**

a. Syllabus

Semester: VI Course Name: Philosophy of Mind Course Code: PHI-HC-6016

Unit I

Psychology and Philosophy of mind Cartesian dualism Problems of Cartesian dualism

Unit II

Parallelism Occasionalism Epiphenomenalism

Unit III

Behaviourism Identity theory Functionalism

Unit IV

Problem of Personal identity Physical Criterion Memory Criterion

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly.

ii.

a. Syllabus

Semester: VI Course Name: META ETHICS Course Code: PHI-HC-6026

Unit I

Normative Ethics Ethical Concepts and Evaluation-Good and Right Meta Ethics

Unit II

- G. E. Moore: Indefinability of 'Good'
- G. E. Moore: Naturalistic Fallacy
- G. E. Moore: Autonomy of Morals

Unit III

- A. J. Ayer: Ethical Terms as Pseudo Concepts
- C.L. Stevenson: Characteristics of Moral Discourse
- C.L. Stevenson: Persuasive Definition

Unit IV

R. M. Hare: Universal Prescriptivism

R. M. Hare: Nature of Moral Arguments

R. M. Hare: Weakness of the Will

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Class Test
II	Sessional Test
III	Sessional Test
IV	Viva

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

iii.

a. Syllabus

Semester: VI Course Name: Philosophy of Language Course Code: PHI-HE-6026

Unit I

Language and World Frege's Sense and Reference Russell's Definite Description

Unit II

Ideational Theory of Meaning Referential Theory of Meaning Use Theory of Meaning Unit III

Correspondence Theory of Truth Coherence Theory of Truth Pragmatic Theory of Truth

Unit IV

Performative and Constative Utterances Locutionary, Illocutionary and Perlocutionary Acts Theory of Illocutionary Forces

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

iv.

a. Syllabus

Semester: VI Course Name: Applied Ethics Course Code: PHI-HE-6036

Unit I

Nature of Applied Ethics, its scope Applied Ethics and Human Values

Unit II

Use and exploitation of nature Animal killing and animal rights

Unit III

Computer crime Ethics and Legal aspects of virtual worlds

Unit IV

Rights and obligations of health care professionals, Patients and family, Abortion, Euthanasia: Active and Passive

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

c. Assessment Method for Each Unit

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Viva
IV	Viva

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

V.

a. Syllabus

Semester: VI Course Name: POLITICAL & SOCIAL PHILOSOPHY Course Code: PHI-RE-6026

Unit I Rights and Duties Justice Equality & Liberty

Unit II

Anarchism Socialism Marxism

Unit III

Monarchy

Theocracy

Democracy

Unit IV

Humanism

Secularism

Multiculturalism

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done

g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly

vi.

a. Syllabus Semester: VI Course Name: PHILOSOPHY OF RELIGION Course Code: PHI-GE-6016

Unit I Religious Concepts Faith and Revelation Idea of the Holy Soul and Immortality

Unit-II Arguments for Existence of God Ontological Cosmological Teleological; Moral

Unit III Theories of Belief in God Polytheism Deism Monotheism

Unit IV Relation of God and World Deism Pantheism Panentheism

b. Teaching Method for Each Unit of The Syllabus

Unit	Teaching Method
Ι	Lecture – Discussion Method
II	Lecture – Discussion Method
III	Lecture – Discussion Method
IV	Lecture – Discussion Method

Unit	Assessment Method
Ι	Sessional Test
II	Sessional Test
III	Assignment
IV	Assignment

- d. Lecture notes (Handwritten/typed) : Handwritten
- e. Consolidated attendance statement of students : to be kept properly
- f. Result analysis: to be done
- g. Sample copies of evaluated answer scripts of class test, assignments, tutorials, lab records, mid, end semester exams (Highest, average, and marginal pass) : to be kept properly.